Vízügyi Közlemények, 1986 (68. évfolyam)
1. füzet - Sass Jenő-Domokos Miklós: A Duna-medencébe eső ország-területrészek vízmérlegei
110 Sass J. és Domokos M. и Венгрией, которая показывается на рис. 3. Метод расчета для таблицы II для водного режима поверхностных водных ресурсов отдельных стран, с особенным вниманием на распределение возвратных и невозвратных вод, на примере Румынии, показывается на рис. 4. Значения показателя-соотношения образующих на отдельных частных территориях стран и невозвратных водных ресурсов авторами даются в (17) столбе таблицы I. Придунаские страны в понижающейся тенденции А следуют гидрографической очередности, но соответственно орографическим-гидрологическим данным есть и исключение: сравнительно высокое значение Я для Югославии и низкое значение А для Венгрии. Результаты, сообщенные в статье, наряду с рабочими гипотезами, необходимыми для составления водного баланса стран - рис. 3 и 4 - не могут считаться общей позицией гидрологического рабочего коллектива указанных придунайских стран, а пока могут считаться предложением авторов настоящей статьи. * * * Water balances of parts of the countries belonging to the Danube Basin by J. SASS, С. E. and Dr. M. DOMOKOS, С. E. and Appl. Math. Based on maps of the Danube Basin delineating multiannual average sums of precipitation, areal évapotranspiration and surface runoff, the multiannual average water balances of 47 natural catchments of the Basin had been developed (Domokos-Sass , 1985). In this paper, multiannual average water balances of the 12 countries located entirely or partly in the Basin (there are 8 important Danube-countries: Federal Republic of Germany, Austria, Czechoslovakia, Hungary, Yugoslavia, Bulgaria, Rumania and the Soviet Union; there are 4 countries with no considerable areal contribution to the catchment: Italy, Switzerland, Poland and Albania) were prepared on the same set of isoline maps. The Danube Basin was subdivided into balance units and sub-units (Fig. 1). Water balances calculated according to the main areal units are presented in Table 1. The areal average values of the water balance elements - precipitation (P), évapotranspiration (E) , and runoff (R) - determined by planimetry on the isoline maps are shown in columns (8), (9) and (10) of the table. The closing error (d) according to Eq. (1) was favourable (less than ±5% seen in columns 11) for each country. Average runoff coefficients (a.) of the individual parts of countries are represented in column (12) and in Fig. 2. Contribution to the potential surface water resources of the Danube Basin by the individual parts of the 8 countries are in a range of 29.8% (YU) and 2.6% (H) according to column (15) in Fig. 5. The concept of water resources division used in the calculation on the borderline sections is presented in Fig. 3 based on an example for the Danube stretch between Czechoslovakia and Hungary. The method for the calculations of water resources transport of the individual countries presented in Table 2 - with special regard on the separation of returning and not returning released discharges from the country - is shown in Fig. 4 on Rumania's example. An index, the quotient of the amount of originating and released water resources of a part of a country is presented in column (17) of Table 1. In this way, the sequence of the 8 countries according to their decreasing A-values follows, in general, the hydrographical sequence with two accentuated exceptions (according to their orographical and hydrological characteristics): an extreme high /.-value for Yugoslavia and an extreme low one for Hungary. Results of the paper based necessarily on working hypotheses for the setting up of water balances - presented in Figs. 3 and 4- in the individual parts of the affected countries do not reflect as of yet the point of the hydrological working community of the Danube countries. It may be considered only as a recommendation of the authors. * * *