Zsuffa István: Műszaki hidrológia I. (Műegyetemi Kiadó, 1996)
3 A HIDROLÓGIAI KÖRFOLYAMAT ELEMEI
3.2.11.2.1 Az. éves csapadékmennyiségek valószínűségi eloszlásfüggvénye Hazánk mérsékelt éghajlati zónájában az évi csapadék-események száma a 3()-at még a legszárazabb évben is meghaladja. Ennek megfelelően nagy biztonsággal alkalmazható a Gauss-Laplace féle központi határeloszlás tétel, amely szerint sok. bizonyos - a hidrometeorológiai eseményeknél mindig érvényes'- föltételeknek megfelelő, de tetszőleges eloszlású, egymástól független valószínűségi változók összegének meg-nem haladási valószínűsége normális eloszlásfüggvényt követ. Nyilvánvaló ugyanis, hogy az egyes napok Cs, csapadékai egymástól függetlenek és ezen napi csapadékok szórása véges, azaz mivel p(Cs, |Csj) = p(Cs,) ahol: i. j = 1.2.3 .......m és az évi csapadékmennyiség legalább 30 független napi csapadék összege, azaz 9rl° es a központi határeloszlás tétel értelmében (lásd például Prékopa. Valószínűségelmélet 289. oldal) ezen évi csapadékösszeg elmélet eloszlásfüggvénye csakis normális eloszlás. Már közel kétszáz éve annak, hogy e matematikailag egyértelmű és egzakt tételt Gauss levezette és a levezetéssel egyidejűleg megvizsgálta a nyilvánvalóan asszintptó- tikus közelítés „sebességét". Megállapította, hogy az elméletileg végtelen felé tartó összetevőre levezetett függvény már 30 egymástól független valószínűségi változó ösz- szegének valószínűségi eloszlását is nagy biztonsággal szolgáltatja. A Gauss-Laplace tételnek megfelelően tehát az évi csapadék összegek valószínűségi eloszlását egyértelműen az F(.\) = p le S, < X V 2 • 71 • < e • d.\ (3.11.3) N(M. n) matematikai rövidítéssel is jellemzett m. cr paraméterű. ..normális”, vagy Gauss-Laplace elméleti valószínűségi eloszlásfüggvény szolgáltatja. A 3.11.3 képletben az F(x) függvény érték tehát annak a p valószínűségét szolgáltatja, hogy a Cs, csapadékok évi összege az x független v áltozó o < x < x értelmezési tartományának bármely értékénél kisebb. A valószínűség számítás elemi tételeivel bizony ítható, hogy a képletben szereplő m paraméter a valószínűségi változó várható értéke, rr pedig c valószínű-