199191. lajstromszámú szabadalom • Immunológiai eljárás herbicidek kimutatására
199191 A találmány tárgya immunológiai eljárás a talaj-, illetve ivóvízben előforduló szenynyező anyagok, főleg növényvédőszerek kimutatására. Az utóbbi időben riasztó beszámolók váltak ismertté a gyakran nagyobb szabású tisztítás nélkül ivóvízként felhasználásra kerülő talajvíz műtrágyából származó nitráttal, kémiai tisztítókból származó klórozott oldószerekkel, herbicidekkel, peszticidekkel, inszekticidekkel és bomlási termékeikkel történő szennyeződéséről. A legproblematikusabb az atrazin nevű növényvédőszer, valamint metabolitjai jelenléte az ivóvízben. Az atrazin, amelynek kémiai neve 2-klór-4- -etil-amino-6-izopropil-amino-l ,3,5-triazin, szagtalan fehér port képez; kereken 30 éve használják világszerte gyomirtószerként. Hatásmechanizmusa, hogy a fotoszintézist gátolja, így a „gaz" gyorsan pusztul. Főleg kukoricatáblákon végzett gyomirtáshoz használják az atrazint, a Német Szövetségi Köztársaság kukoricatábláinak 90%-át kezelik vele, így évi ezer tonnával az atrazin a legnagyobb mennyiségben alkalmazott herbicid hatóanyag. Az atrazin mellett egyéb triazin-származékokat is használnak herbicidként, előfordulásuk a talaj- és élővízben bizonyított tény. Az 1. táblázat áttekintést nyújt a legfontosabb triazin-herbicidek felől. 1. táblázat A legfontosabb triazin-herbicidek (az alapváz: lásd csatolt rajzon az (I) képletet) Ametryn: R'=-S-CH3, R2=-NH-CH (CH3)2, R3=-NH-C2H5 Atralon: R‘=-0-CH3, R2=-NH-CH (CH3)2, R3=-NH-C2H5 Atrazin: R‘=C1, R2=-NH-C2H5, R3=-NH-CH(CH3)2 Aziprotryn: R'=-S-CH3, R2=-NH-CH(CH3)2, R3=N3 Desmetryn: R'=-S-CH3, R2=-NH-CH (CH3)2 R3=-NH-CH3 dipropetryn: R'=-S-C2h5, R2=R3=-NH-CH(CH3)2 methoprotryn: R‘ = -S-CH3, R2=-NH-CH(CH3)2, R3=-NH-C3H6-OCH, prometryn: R'=-S-CH3, R2=R3=-NH-C3H7 propazin: R'=CI, R2=R3=-NH-C2H5 simazin: R'=C1, R2=R3=-NH-C2H5 terbumeton: R‘=-0-CH3, R2, R3 mint terbutryn-nél terbuthylazin: R‘=C1, R2, R3 mint terbutrynnél terbutryn: R'=-S-CH3, R2=-NH-CH(CH3)2, R3=-NH-C2Hs. Hosszú időn keresztül abból indultak ki, hogy a fenti triazin-származékok alkalmazásuk után lebomlanak, talajrészecskékhez kötődnek, és nem veszélyeztetik a talajvizet. Bebizonyosodott azonban, hogy a vegyületek eléggé stabilak, és felezési idejük (amely alatt a talajban lévő hatóanyag fele lebomlik) két és öt hónap közötti idő. Homokos talajból, agyagban szegény talajból a hatóanyag vi- 2 1 szonylag könnyen kimosódik a talajvízbe, ahol a lebomlás még' lassabban megy végbe, így triazin maradékot még évek múltán is felbukkanhatnak. Az ivóvíz-rendelet, valamint a közös Piac „Irányelvek az emberi fogyasztásra kerülő víz minőségéről" c. rendelete az ivóvízben még tolerálható mennyiségek maximális határértékét tartalmazza. Egyes anyagok esetén a maximális határérték 0,0001 mg/1 (lOOng/l), és az ilyen anyagok összmennyisége nem haladja meg a 0,0005 mg/1 (500 ng/1) értékét. Hogy a kimutatás pontos legyen, az alkalmazott eljárás kimutathatósági határa 1—2 nagyságrenddel a kimutatandó koncentráció alatt kellene hogy legyen. A számításba jövő anyagok nagy száma és az alacsony határértékek azonban kémiai elemzés szempontjából nagy problémát jelentenek. Fizikai-kémiai eljárások (GC, GC-MS, HPLC) esetén a vegyi anyagok azonosítása, mennyiségi meghatározása bonyolult és drága feldúsítási eljárásokat igényel, a mérés maga költséges és időigényes, emellett a vegyületek toxicitásáról nem ad képet..Maradnak a korszerű biokémiai elemzési eljárások, mint amilyenek az immunológiai tesztek, az ún. immuno-assay tesztek, amelyekben tesztanyagként sejtek alkotórészei szerepelnek. A vízelemzés területén az immunológiai analitika igen gyors és érzékeny vizsgálati módszer, gyakran gyors, költségkímélő és hatékony környezet-feltérképezést biztosít. Az immuno-assay módszerek nagy érzékenységű teszt-rendszerek, amelyekkel az antigén-antitest reakció alapján anyagok mennyiségi meghatározása végezhető el. Laboratóriumi állatok immunizálása révén beindítják az antitestek termelődését, majd az állat vérsavójából vagy az antitesteket termelő limfocitákból az antitesteket kinyerik, és affinitás-kromatográfiásan, például agarózzal töltött oszlopon tisztítják. Az antitestek a magasabb rendű állatok egyik természetes védelmi rendszere. A védőfunkció azon alapul, hogy természetes fertőzés vagy mesterséges fertőzés alapján fajlagos antitestek képződnek. Az antitestek képződésének egyik előfeltétele egy bizonyos móltömeg. Amennyiben igen kicsi molekulára, például egy növényvédőszer molekuláira fajlagos antitest képződését akarjuk kiváltani, a molekulákat (hapténeket) immunizálás előtt nagy molekulájú hordozó molekulához, például proteinhez (hémocianin, szarvasmarha szérumalbumin, ovalbumin, tiroglobulin, polilizin, stb.) kell kapcsolnunk. Vegyi anyag kimutatására az antigén-antitest-kötés használható, amely akkor alakul ki, ha a vegyi anyagot antigénként tartalmazó minta az antitesttel kerül érintkezésbe. A klasszikus immuno-assay tesztben a meghatározandó antigének konkurrálnak azonos fajlagosságú, radioaktív jelzéssel ellátott antigénekkel az antitest kötőhelyeiért. Az 2 5 10 15 20 25 30 35 40 45 50 55 60 65