Koczkás Gyula: Örök törvények. A fizika regénye. 2. kiadás - Emberi alkotás regényei (Budapest, 1947)
III. A mérésekről
20 két oldalára ható forgatónyomatékok egymással egyenlőek. Nem kell ettől a szigorúnak látszó kifejezéstől megijednünk. Igen könnyen kifejezhetjük ugyanis a forgatónyomatékot, ha az erőt szorozzuk az erő karjával. Az erő a tömegmérésnél nem más, mint a mérleg serpenyőjébe tett tömeg. Az erő karja pedig nem más, mint a mérleg karja, melyet ábránkon k1 és k2-vei jelöltünk meg. Tehát, ha a mérleg karjai egyenlőek, akkor a mérleg serpenyőjébe tett súlyok, egyensúly esetén, szintén egyenlőek lesznek. Ha tehát meg akarunk mérni egy ismeretlen tömeget, akkor azt a mérleg bal serpenyőjébe tesszük. A jobb serpenyőbe pedig addig teszünk ismert súlyokat az előre elkészített súlysorozatunkból, míg a mérleg egyensúlyba nem jön. Ekkor, bizonyos hibahatárokon belül, azt állíthatjuk, hogy a bal serpenyőbe tett ismeretlen tömeg egyenlő a jobb serpenyőbe tett súlysorozat tömegével. Ez a mérés megfelel a gyakorlat számára, de bizony akkor, midőn pontos méréseket kell végezni, más mérési módszerekhez kell folyamodnunk. Mindenekelőtt hibát okozhat, hogy a mérleget készítő mechanikus nem tudta a mérleget tökéletesen egyenlő karúvá tenni. Tömegmérésünket ennélfogva úgy kell átalakítani, hogy a mérlegkarok egyenlőtlenségéből származó esetleges hibát tökéletesen kiküszöbölhessük. Többen dolgoztak ki megfelelő módszereket, melyek közül legjobban a .Borda-féle tara-eljárás terjedt el. A .Borda-féle módszer abból áll, hogy a mérendő tömeget először a bal serpenyőbe tesszük, és azt a jobb serpenyőbe helyezett valamilyen tarával (finom sörét, homok, gránitszemcsék vagy üveggolyó) kiegyensúlyozzuk. Most az ismeretlen tömeget levesszük a bal serpenyőről és helyébe súlysorozatunkból teszünk ismert tömegeket. Addig rakunk a serpenyőbeéismert tömegeket, míg csak az előbbi egyensúlyi helyzetet elő nem állítottuk. Ha az előbbi egyensúlyi helyzet előállt, akkor — mivel ugyanazon a karon történt a tulajdonképpeni mérlegelés — a bal serpenyőbe tett ismert tömegeket leolvassuk és ez lesz az ismeretlen tömeg értéke. Az ismert tömegeket tartalmazó súlysorozat úgy van összeállítva, hogy abból minden érték előállítható legyen. így például van benne 2 drb 1 grammos, 2 drb 2 grammos, 1 drb 5 grammos, 2 drb 10 grammos, 2 drb 20 grammos, 1 drb 50 grammos, 2 drb 100 grammos és így tovább. így aztán ha például 197 grammot kell megmérni, akkor súlysorozatunkból kiveszünk : 1 drb 100 gr-ost = 100 gr. 1 » 50 » = 50 » 2 » 20 » = 40 » 1 » 5 » = 5 » 1 » 2 » = 2 » összesen 197 gr. Meg kell jegyeznünk, hogy a mérlegelésnél a súlyokat nem szabad puszta kézzel megfogni, hanem mindegyiket csipesz segítségével helyezzük K< Kz Laboratóriumi mérleg.