Hidrológiai Közlöny, 2013 (93. évfolyam)

2013 / 5-6. különszám - LIV. Hidrobiológus Napok előadásai

101 Köszönetnyilvánítás A tanulmány a Bolyai János Kutatási Ösztöndíj támoga­tásával készült. Irodalom Ando T., Otsuka S., Nishiyama M., Senoo K., Watanabe M.M. and Matsumoto, S. (2003) Toxic effects of dichlomethane and trichloro­ethylene on the growth of planktonic green algae, Chlorella vulga­ris NIES227, Selenastrum capricornutum NIES35, and Volvulina stein//NIES545. Microbes and Environments 8: 43^46. Berglund O., Larsson P., Ewald G. and Okla L. (2001) Influence of tro­phic status on PCB distribution in lake sediments and biota. Envi­ronmental Pollution 113: 199-210. Bringmann G. and Kühn R. (1980) Comparison of the toxicity thres­holds of water pollutants to bacteria, algae and protozoa in the cell multiplication inhibition test. Water Research 14: 231-241. Chappie D.J. and Burton G.A. Jr (2000) Applications of aquatic and sediment toxicity testing in situ. Soil Sed Cont 9: 219-245. Culp J.M., Lowell R.B. and Cash K.J. (2000) Integrating mesocosm experiments with field and laboratory studies to generate weight- of-evidence risk assessments for large rivers. Environmental Toxi­cology and Chemistry 19: 1167-1173. European Standard EN 15204 2006. Water quality - Guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermöhl technique). European Commitee for Standardizationrue de Stassart, 36, Brussels. Felfoldy, L., 1987. A biológiai vízminősítés. Vízügyi Hidrobiológia 16. VGI, Budapest, 258. González J.F., Figueiras G., Aranguren-Gassis M., Crespo B.G., Femá- dez E., Mórán X.A.G. and Nieto-Cid M. (2009) Effect of a simula­ted oil spill on natural assemblages of marine phytoplankton enclo­sed in microcosms. Estuarine, Coastal and Shelf Science 83: 265- 276. Guasch H., Munoz I., Rosés N. and Sabater S. (1997) Changes in atra- zine toxicity throughout succession of stream periphyton communi­ties. Journal of. Applied Phycology 9: 132-146. Gurney S.E. and Robinson G.C. (1989) The influence of two triazine herbicides on the productivity, biomass and community compositi­on of freshwater marsh periphyton. Aquatic. Botany 36: 1-22. Leighton D.T. Jr and Calo J.M. (1981) Distribution coefficients of chlorinated hydrocarbons in dilute air-water systems for groundwa­ter contamination applications. Journal of Chemical and Enginee­ring Data 26: 382-385. Liebig M., Schmidt G., Bontje D., Kooi B.W., Streck G., Traunspurger W., Knacker T. (2008) Direct and indirect effects of pollutants on algae and algivorous ciliates in an aquatic indoor microcosm. Aqua­tic Toxicology 88: 102-110. Lopez-Mancisidor P., Carbonell G., Femández C., Tarazona J.V. (2008) Ecological impact of repeated applications of chlorpyrifos on zooplankton community in mesocosms under Mediterranean conditions. Ecotoxicology 17: 811-825 Lorah M.M. and Voytek M.A. (2004) Degradation of 1,1,2,2-tetrachlo- roethane and accumulation of vinyl chloride in wetland sediment microcosms and in situ porewater: Biogeochemical controls and as­sociations with microbial communities. Journal of Contaminant Hydrology 70: 117-145. Lukavsky J., Furnadzhieva S. and Dittrt F. (2011) Toxicity of Trichlo­roethylene (TCE) on Some Algae and Cyanobacteria. Bulletin of Environmental Contamination and Toxicology 86: 226-231. McCann K. (2000) The diversity-stability debate. Nature 405: 228- 233. Moreira-Santos M., Soares A.M.V.M. and Ribeiro R. (2004) A phyto­plankton growth assay for routine in situ environmental assess­ments. Environmental Toxicology and Chemistry 23: 1549-1560 Moreira-Santos M., da Silva E.M., Soares A.M.V.M. and Ribeiro R. (2005) In Situ and Laboratory Microalgal Assays in the Tropics: A Microcosm Simulation of Edge-of-Field Pesticide Runoff. Bulletin of Environmental Contamination and Toxicology 74: 48—55. Pearson C.R. and McConnell G. (1975) Chlorinated Cl and C2 hydro­carbons in the marine environment. Proceedings of the Royal Soci­ety B: Biological Sciences 189: 305-332. Pesce S., Fajon C., Bardot C., Bonnemoy F., Portelli C. and Bohatier J. (2006) Effects of the phenylurea herbicide diuron on natural riveri­ne microbial communities in an experimental study. Aquatic Toxi­cology 78: 303-314. Thomas R.G. (1990) Volatilization from water. In: Lyman W.J., W.F. Reehl and D.H. Rosenblatt, eds. Handbook of chemical property es­timation methods. New York, NY: McGraw-Hill Book Co., 15-9 to 15-30. Tlili A., Dorigo U., Montuelle B., Margoum C., Carluer N., Gouy V., Bouchez A. and Bérard A. (2008) Responses of chronically conta­minated biofilms to short pulses of diuron. An experimental study simulating flooding events in a small river. Aquatic Toxicology 87: 252-263. Utermöhl, H. 1958. Zur Vervollkommung der quantitativen Phyto­plankton-Methodik. Mitt. Int. Vr. Limnol. 9: 113-118. Villeneuve A., Montuelle B. and Bouchez A. (2011) Effects of flow re­gime and pesticides on periphytic communities: Evolution and role of biodiversity. Aquatic Toxicology 102: 123-133. Wakeham S.G., Davis A.C. and Karas J.L. (1983) Mesocosm experi­ments to determine the fate and persistence of volatile organic com­pounds in coastal seawater. Environmental Science & Technology 17:611-617. Ward G.S., Tolmsoff A.J. and Petrocell S.R. (1986) Acute toxicity of trichloroethylene to saltwater organisms. Bulletin of Environmental Contamination and Toxicology 37: 830-836. Yatchi S. and Loreau M. (1999) Biodiversity and ecosystem producti­vity in a fluemating environment: the insurance hypothesis. Procee­dings of the National Academy of Sciences U.S.A. 96: 1463-1468. Zytner R.G., Biswas N. and Bewtra J.K. (1989) Volatilization of per- chloroethylene from stagnant water and soil. In: Bell J.M., (ed) Pro­ceedings of the 43rd Industrial Waste Conference, Purdue Universi­ty, May 10-12, 1988. Chelsea, MI: Lewis Publishers, Inc. 101-108. Testing the effects of chlorinated hydrocarbons on composition of phytoplankton assemblages in microcosms Bácsi, I., B-Béres, V., Balogh, J., Grigorszky /., Vasas G., Szabó, L.J., Nagy, S.A.1 Abstract: The effects of three short chained chlorinated hydrocarbons (tetrachloroethane, tetrachloroethylene and trichloroethyle­ne) on spring and summer phytoplankton communities was studied in microcosm experiments. The results show that the effects of these compounds highly depends on the composition of phytoplankton assemblages and the sensitivity of do­minant species. The euglenid Trachelomonas and the diatom Cyclotella were the less sensitive genera. Green algae be­longing to orders Chlorellales and Chlamydomonadales showed low sensitivity; green algae from order Sphaeropleales seemed moderately sensitive. In contrast, Cryptophytes almost totally disappeared from treated assemblages to the end of the exposure. Chlorinated hydrocarbons affect negatively the composition of phytoplankton communities, but there were more resistant species in the more diverse systems (spring assemblages in our case), this enables them to offset the functional impairment resulting from the disappearance of other species. Keywords: Chlorinated hydrocarbons, Synechococcus, oxidative stress.

Next

/
Oldalképek
Tartalom