Hidrológiai Közlöny 1966 (46. évfolyam)
11. szám - Horváth Imre: Függőleges tengelyű mechanikus felületi levegőztetőberendezésekkel végzett oxigénfelvételi vizsgálatok
504 Hidrológiai Közlöny 1966. 11. sz. Horváth I.: Oxigénfelvételi vizsga,latok [19] Robertson, W. S.: Evaluation of the Simcar Aerator for Trade Effluent Treatment. The Institut of Sewage Purification Journal and Preceedings. 37. 1964. [20] Rushton, J. H.—Oldshue, J. Y.: Mixing — Present Theory and Practiee I. II. Chemical Engineering Progress. 1953. 4—5. [21] Spohr, G.—Eckenfelder, W. W. Jr—Brenner, T. : A „Permaerator" turbinás levegőztetővel végzett szennyvíztisztítás kontakt stabilizációs folyamata. Gesundheits-Jngenieur 1962. 8. [22] Stalman, V.: Die BSK-Turbine- ein neues Hochleistungs — Belüftungssystem der Abwassertechnik. Wasser—Abwásser. 1965. jún. [23] Webber, P. J.: Surfaee Turbine Aerator for Water Waste Treatment. Water and Sewage Works 1964. okt. Chicago. [24] Weston, R. F.—Stack, V. T. Jr.: Fundamentals of Operation of Entrainment Aerators. Manhattan College 1960. ápr. [25] Weston, R. F.: Studies in Entrainment Aeration. •Journal Water Pollution Control Federation. 1962. ápr. HCCJlEflOBAHHH, nPOBEflEHHblE flJlfl H3YMEHHH HOflAMM KHCJlOPOflA I1PM nOMOUtH A3PAIIHOHHblX YCTAHOBOKHMEIOIHHX BEPTMKAJlbHyiO OCb H flEfíCTBYIOIHHX nOBEPXHOCTHO-MEXAHHMECKH Id. Xopeam Ha Bodoxo3nücmeemwü Kacfiedpe CTpoiiTeJibHoro H TpaHcnopTHoro IlojniTexHimecKoro HHCTiiTyTa HaiajiH B 1965 r. pHfl HCCJteaoBaHHH nyTeM npHMeHeHHíi BepTHKaJibHbix poTopoB JIJIH BbiíicHeHHíi nponeccoB, npOHCXOAHuiHx B aapauHOHHbix őaccefmax. B xo/ie yno.MjmyTbix HCCJieaoBaHitií öbiJiH npoBeaeHbi cpaBHHBaiomiie aHajiH3bi npH nOMOmn poTopoB CUMKap, TypÖMHHI.IX POTOPOB H T. H. „ríJlOCKHX" POTOPOB, 3 TaKWe C KOMÖHHaiUieH CHCTeM CüMKap ii CuMnjieKc. BbiBe:tennbie, Ha ocHOBaHiin uccjieflOBaHiifi, PE3YJIBTATBI cyMMiipye.M B cjieflyiomiix: 1. KpHBaa H30őpa>Kaioinan CBH3b norpy/KeHHH poTopa ii KJÜ pacnojioraeT c MaKCHMyMOM. 3HA<IHT ecTb Tanoe norpyweHHe poTopa, npu KOTOPOM K Ta HMeeT MaKCHMajIbHyiO 3HaMeHHI0. 2. M3 MHCJia OÖOpOTOB n MO>KHO CyflHTb 0 TÓM, MTO yBejiHMHBaiomeecji 3Ha>ieHne micjia O6OPOTOB c IOKHM 3H3HeHHeM KLü C0np0B0>KAaeTCH. 3. MEM őojibine HHCJIO O6OPOTOB AAHHORO poTopa, TEM SoJibiuiiM NORPYJKEHHEM MOHCHO ii3MepiiTb 3Ha<ieHtie MaKCHMajibHoro K Ta. rioi py>KeHne H MHCJIO O6OPOTOB Hy>KHO WEHHTB COOTBECTBEHHO apyr APYRY, NOCKOJIBKO KAWFLOE 3Ha'iemie iioipyM<eHHH ne pacnojioraeT c IOKHM TO onTHMajibHbiM 3HaMCHHeM Muceji oöopoTa n. 4. H3 BJIHÍIHHM BOAHHORO crojiéa h, 0i<a3aHH0r0 na noflBo;I KHCJiopoaa MO>KHO onpeaeJiHTb, iro CBH3b Kia = f(h) TOHÍE pacnojioraeT c MAKCHMYMOM. 5. Ci<opocTb noflBona Kncjiopoaa 3aBncnT n OT reoMeTptmecKofi (JiopMbi öacceÜHa. MOWHO yTBep>K,£iaTb, ITO HE nejiecoo6pa3H0 3HAIEHHÍI Kjfi npnj;aBaTb K aapamiOHHi.iM ycTpoiícTBaM, n0CK0JibKy aapaiiHOHHayi ycTaHOBKa, ABH>KYMA>ICH cpe/ia H rpammiiBaioiuHii őacceíiH oöpa3yioT coBMeemo flHHaMMMecKyio e/iHHimy h COBMecTHO onpefleJiHioT CKOPOCTB NOFLBOAA H NPUHÍITNA KHCJiopoaa. 6. He AOCTATOHHO poTopy oöecneMHTb TOJibKO BbicoKoe npHHHTHe KHCJiopoaa, nocKOJibKy c sth Meme He OÖECNEMHBAETCÍI H cooTBeTCTByiomee oöecneneHHe ycJioBHÍI TeneHiiíi. 3TO OCOÓEHHO B3>KHO AJIH CHCTeM, HMeiomiix BepTHKanbHbie OCH. 7. CBJI3b OC/N=f(hA') HMeeT MaKCHMyM, 3H3HHT MOWHO BbiőpaTb HanőoJiee 3KOH0MHHH0e norpy>KeHHe poTopa. 8. K öojiee BI .ic0K0 . viy Miicjiy oőopoToií -— npn TOM >«e norpyweHHH — B uccjieflyeMoií 30He OTHOCHTCH 6ojiee BbicoKoe 3HAMEHNE OC/N. KpHBaa OC/N = /(h) TOM<e pacnojioraeT c MAKCHMYMOM. 9. To>K/iecTBeHHo i< onpefleJieHtwM. caejiaHHbiM B OTHOIIieHHII HCCJiejtOBaHHH no npHHHTHÍI KHCJlOpOfla H ceüvac MO>KHO CKa3aTb, MTO HE neJiec00Öpa3H0 3NAMEHHE CO/N NPUJTABATB K aapauHOHHOH YCTAHOBKE, NOCKOJIBKY reoMeTpiiMecKaa (JiopMa aapannonHoro őaccenHa H ycjioBHH TeqeHHH TaKwe HMeioT onpeaejijnoiuee 3HaHeHHe H BJIHHHHH. 10. Ha OCHOBAHÍIN Bcex Bbinien3Jio>KeHHbix >ICHO, MTO npu 3KOHOMHHECKOÍI oneHKe KaKoií TO aapaitHOHHOH CHCTeMbI He flOCTaTO^IHO yMHTblBaTb TOJIbKO COOTHOUieHHe OC/N, nocKOJibKy OHO ne 0Tpa>KaeT SHeprHio, 3aTpaHeHHyio fljiH C03flaHHíi MexaHiiMecKOÍi paóoTbi N cooTBeTCTByiOIUHX yCJIOBHH TeweHHJI. Sludies on íhe efficiency of vertical-shaft, mechanical surfaee aeralion installations By I. Horváth A detailed experimentál study was initiated in 1965 at the Chair for Water Management, Technical University for Building and Traffic, Budapest, with the aim of gaining insight into phenomena in aeration basins equipped with different types of vertical-shaft i'otors. Comparative studies were made with rotors of the Simcar and turbine types, as well as with so-ealled fiat rotors. A new rotor type developed here by the cornbination of Simcar- and Simplex type rotors, was alsó tested. The main conclusions of these experiments are summarized below as: 1. The curve representing the relationship between rotor submergence and K j.n shows a maximum. There is consequently a depth of rotor submergence, at which Kxa assumes, a peak value. 2. As far as the effect of speed n is concerned, increasing K/ji values were found to pertain to increasing speeds of revolution. 3. The higher the speed of a partieular rotor, the greater the depth of submergence at which maximum KL<I occurred. Submergence and speed should be adjusted to each other, since an optimál speed n pertains to each depth of submergence hk. 4. From the effect of head h on oxigén introduction efficiency it was found that the relationship Ki/i = f(h) shows alsó a maximum value. 5. The rate at which oxigén is introduced depends alsó on the geometrical design of the aeration basin. It can be stated in generál that the specification of Kia values for a partieular aeration equipment is erroneous, since the equipment, the médium circulating and the boundary surfaee represented by the basin form a dynamic unit and it is their combination by which the rate of oxigén introduction is controlled. 6. High rates of oxigén introduction by the rotor are alone insufficient, since proper flow conditions are not ensured thereby. This consideration is of special importance with vertical-shaft, installations. 7. The relationship OC/N=/(fijt) shows a maximum, so that the most economical rotor submergence can be selected. 8. At identical depths of submergence, higher speeds are usually accompanied by higher OC/N values in the rangé considered. The curve OC/N =f(h) was alsó found to show a maximum value. 9. As during the assessment of oxigén introduction studies it can again be established that OC/N values should not be specified for partieular aeration equipment, since the geometrical design of the aeration basin uséd, or ensuing flow conditions are alsó significant factors. 10. It will be perceived from the foregoing that in the econmical evaluation of any aeration installation, consideration of the OC/N ratio alone is insufficient, as the energy consumed in mechanical work for creating suitable flow conditions is not reflected therein.