Hidrológiai Közlöny 1960 (40. évfolyam)

5. szám - Vágás I.: Az ülepítés fizikokémiai szemlélete

382 Hidrológiai Közlöny 1960. 5. sz. Vágás I.: Az iilepítés fizikokémiai szemlélets MaCTÜU, HMeiOIHHX II0Jlt'3HyiO CKOpOCTb flJI>I OCTaHBaHHH (ypaBHeHiie 37/Ö). 3. TpemuM eudpaeAUHecKUM KoscpunuenmoM noAe3­noeo deücmeim (r,a 3) BbipawcaeTcn, MTO Kai<yio MacTb paöo­Mero pacxoda Q e cocTaBAHer pacxo/i Q m BOAHBIX MacTim, iiMeiomiix nojie3Hyio CKOpOCTb (ypaBiiemie 37/r). /. nepebiM KO30uquemnoM noAeíhiozo deiícmaun om­cmaueaHüH (>;«,) Bbipa>KaercH, MTO Kai<yio >iacrb Beca D MarepnajibHbix Macrnn nonaAaiomnx 3a eflHHHuy Bpe­MeHII B OTCTOHHHK COCTaBJlHL'T BeC Dii MaTepiiajIbHblX WACTHU BBINAAAIOUIHXCH B OTCTOÍÍHUKC 3a EAIIHHNY Bpe­MeHH (ypaBHeHiie 37/r). 5. BmopbiM K03(pm)uenm0M noAe3noeo deücmeiist omcmaueanuH (r]ü 2) BbipawaeTCH, MTO Kai<ott oö'bö.M Vh cocTaBJi>nomníi Macrb oö-btÍMa őacceÜHa F HyM<eH öijji őij HAH Kanyio wacTb Bpe.vieHii nepeJiHBaHHji Uz öacceiíHa A0A>KH3 ÖblJia ÜI.I COCTaBIITb BpeMH th, AJ1H AOCTIDKeHHH CTeneHii A^iiC'nniTeAbHoro OTCTaHBaHHH B öacceiiHe c paBHOMepHbiM pacnpeflejiemieM CKOpocrn, HeHMeioine.w McpTBoro oó'böMa, a B ocTajibHbix, IIOAOÖHO paöoTaioinux C AefíCTBHTejlbHblM ÖaCCeiÍHOM (ypaBHClIIIC 37/fl). 6. /JonoAHumeAbHbie nostpiuiueHmbt noAe3Hoeo deü­cmeüH. OHII AOHOAHHIOT COOTBETCTBYIOINNE fleílcTBiiTejib­Hbie Knjl Ha e;;HHimy (100%). 3nai< A0n0AHHTeAbH0ií BEJIIIMIIHBI KII.I1 OTCRANBAHIIM : r,k vvk 2, a 3HAK AOIIOAHH­TCJIbHOÍÍ BeJHIMIIHbl rHflpaBJlHMeCKHX Kim : Vll> r tl„, rjl 3. 7. Ko3(puiiuenm nepeAueaHim (>. a, A/,) noi<a3biBaeT, MTO IiepBbIM I<03(j)IIHHeHT0.M n0Jie3H0I'0 ACHCTBHH OTCTaH­BaHHH r,üi, nojiyMeHHHM rio niApaBJiHMCCKOMy pewHMy, HJIH nepBblM flOnOJIHHTCJIbHIJM Knfl OTCTaHBaHHH ->7/í,, i<ai<aM NACTB COCTABJIHCTCH OT nepBoro KIU1 OTCTAHBAHHH (R/ÍÍ,) B naeajibHOM őacceHHe c paBHOMepHbiM pacnpeae­jiemicM CKOPOCTH, 6C'3 McpTBoro OŐTJÖMA, HJIH OT nepBoro flonojiHHTejTbHoro KI 1,11 (TJA,) OTCTaiiBaHiOi (ypaBHemie 37/e II 37/>K). 3ai<jiK)MHTejibHbie BbiBOAbi cTaTbH : 1. Jlna onpeaejieHiin rHApaBAHMecKiix K03i{)HHHeH­TOB nojie3Horo NEIÍCTBHÍI, Tai<>Ke H KIT^l NEPEAHBAHHH B cJiyMae peaKUHH HyjieBoro H BToporo npHAKa HCNBITAHHJJ NO OTCTailBaHHIO He Hy)l<HO IipOBOAHTb II IieOÖXOAHMO onpeAejiiiTb TOJlbKO KpiiByio nepejiiiBaHiiH. 2. ECJIH oiipeAejiHeTCji NYTCM HcnbiTaHHH nepBbiií KoacfniniieiiT NOAE3HORO AefiCTBiiH OTCTaiiBamiH (HAH nep­Bbiií AOIlOAHIlTeAbHblfl KFIÍI OTCTaHBaHHH) npil HeKOTO­POM THApaBAHMCCKOM COCTOHHIIH OTCTOHHOrO SaCCeiÍHa C AaHHOíí KpHBofí nepeAHBaHHH, AaAce CCAH 3Hae.vi nopHAOK ypaBHeHHH CKOpOCTH peaKUHH , ACnCTBHTeAbHOH AJ1>1 BbinaAaiomerocH MaTepnajia, TO M'OHCHO ONPEAEAHTB iicp­Bbie BejlHMHHbl K03(})HUHeHTOB nOJieSHOCO ACHCTBHH OT­CTaHBaHHH (IIJIII nepBbie BCAHMHHbl AOnOAHIITCAbHblX K03C|)HUHeHT0B II0Ae3H0r0 ACHCTBHH) AJ1ÍI Jiroöoro niA­paBAimecKoro pe>KHMa B öaccefme iiyTiíM pacieTa H npii 3HaiIHH KpiIBOH HCpCAHBaHIIH, IipeAnOAOraH, MTO ypaB­HCHiie cKopocTii peaKuim HAieeT HyAeBoro, HAH BToporo nopHAKa. • 3. ÍIJIH OTCTaHBaHHH 3epHHCTbIX MaTepnaAOB MOWHO HasiicaTb ypaBHCHiie HyAeBoro nopHAKa, C|JM3HKO­xHMHMecKOíí peaKUHH ajih OTCTAHBAHHH AOMauiHbix CTOM­Hbix BOA B CTOHMeM COCTOHHHH npíl6AH3HTeAbHO M0>KH0 HanucaTb ypaBHCHiie nepBoro nopHAKa, a AJifl OTCTan­BaHHH (JíAOKyAHUHOHHbix MaTepnaAOB ypaBHeHiie BTo­poro nopHAKa (|)H3HK0XHMHMeCK0H peaKUHH, KaK 3T0 yTBep>i<AaeTCH TeopéTHMecKHMH H SKcnepHMeHTajibHbiMH AaHHbIMH. Physieal-Chemical Aspocts of the Settling Proccss By I. Vágás The "standard efficiency" theory published by Fiedler and Fitch [1] relating to flocculating materials is developed further in this paper, by a) adopting the flow-through diagram (Fig. ]) as the hydraulic characteristic curve of the settling basin, and b) considering the zero-, first- and second degree forms of the physical-chemical reaction velocity equations of settling, and by interpreting these forms to granular and flocculating materials |Eqs. (12)] The interpretation ot efficiencies, which cliarac­terize the operation of settling basins is given in the following. 1. The first hydraulic efficiency (r]á,) indicates the ratio of the efficient volume I'/ (which is íree írom (lead spaees) to the entire volume V of the basin. At the same time the ratio of the actual average time of passage t a for water particles to the flow-through time (tsz) computed for an ideál basin, in which therc are no dead spaces and the velocity distribution is uniform, is expressed thereby [Eq. (37/a)]. 2. The secund hydraulic efficiency (rj<í 2) indicates the ratio of the volume Vm occupied by water particles móving at velocities favourable for settling to the totál volume 1' of the basin [Eq. (36/6)'}. 3. The third hydraulic efficiency (r/á 3) indicates the ratio of the discharge Qm represented by the water particles moving at velocities favourable for settling to the normál discharge Q e [Eq. (37/c)]. 4. The first settling efficiency (r]U\) indicates the ratio of the wcight Da of material particles settled out during unit time to the weight D of material particles entering the basin during unit time [Eq. (37/d)]­5. The second settling efficiency (rju 2) indicates the necessary volume l'k, respectively to the flow­through time tsz in a basin of ideál velocity distribu­tion, to attain the degree of settling actually ensured by the basin in one, where the velocity distribution is uniform, where there are no dead spaces, bút which operates in an identieal manner as the actual [Eq. (37/e)]. 6'. The complenientary efficiencies complete the eorresponding actual efficiencies to unity (100 per cent). Complementary values of settling efficiencies are denot­ed by -rjt,, r]k 2 while those of the hydraulic efficiences by 17/1, Vh an fl Vh­7. The flow coefficient (X a, %b) indicates the ratio of the first settling efficiency vtti, or of the first comple­mentary settling efficiency vki obtained as a result of flow conditions, to the first settling efficiency (TJÜJ, respectively first complementary settling efficiency (Vk x) of the ideál basin in which the velocity distribu­tion is uniform, and which is free from dead spaces [Eqs. (37//) and (37/gr)]. Conclusion arrived at in the paper are the following : 1. In order to determine the hydraulic efficiencies, the second settling efficiency, as well as the flow coefficient, 110 special settling experiments are required in the case of reactions of the zero and second order. Alone the determination of the flow-through curve is necessary. 2. If the first settling efficiency (or the first complementary settling efficiency) pertaining to any known flow condition — described by the eorrespond­ing flow-through curve — in the settling basin has been determined experimentally, further if the order of the reaction velocity equation applying to the settl­ing material is known, then the value of the first settling efficiency (or of the first complementary settling efficiency) pertaining to any other flow condi­tion in the basin can be determined by computation on the basis of the known flowthrough curve alone, provided the order of the reaction velocity equation is zero or two. 3. As revealed by theoretical and experimentál data alike the physical-chemical reaction equations which describe the settling of granular materials, do­mestie sewage and flocculating materials are of the zero-, approximately first and second order, respect­ively.

Next

/
Oldalképek
Tartalom