Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 1997. Sectio Mathematicae. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 24)

JONES, J. P. and Kiss, P., Some congruences concerning second order linear recurrences

32 James P. Jones and Péter Kiss After some calculation (3), (4) and (5) imply (6) U n{k + 4) EE U nT + U*s (mod D 2Ul), where Jfe+3 (k-M)-l T = (2 (k + 2) - k)B~ n = (k + 4)B — 2 — and fc±i (A; + 2) ((A; + 2) 2 - 1) fc +i 5 = (k + 2)DB~ n + 2 MV 1 -DB* _ k(k 2 - 1 ) *±i n = (A + 4) ((fc + 4) 2 - 1 ) (Li^n 24 24 and so by (6), ^n(Jt+4) = (* + 4)B {± ±^U n (k + 4) ((/c + 4) 2 - l) (fc +4)­3 , , , . + V 2 4 DB-^~ nUl (mod D 2Ul). Hence the congruence holds also for k + 4 and for any odd positive integer k. The other congruences in the Theorem can be proved similarly using Lemma 1, 2, 3 and the identities U2n — V nU n , V 2 n = V,I — 2B n = 2B n + DU 2, Uzn = U nV 2 - B nU n , F 3 n - V n 3 - 3B nV n = B nV n + DV nU 2, Utn = U nV* -2B nU nV n, F 4 n = V* - AB nV 2 + 2B 2 n . References [1] D. JARDEN, Recurring sequences, Riveon Lematematika , Jerusalem (Israel), 1973. [2] J. P. JONES AND P. KLSS, Some identities and congruences for a special family of second order recurrences, Acta Acad. Paed. Agriensis, Sect. Math. 23 (1995-96), 3-9.

Next

/
Oldalképek
Tartalom