Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 1997. Sectio Mathematicae. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 24)

JONES, J. P. and Kiss, P., Some congruences concerning second order linear recurrences

Some congruences concerning second order linear recurrences 33 [3] J. P. JONES AND P. Kiss, Some new identities and congruences for Lucas sequences, Discuss Math., to appear. [4] D. H. LEHMER, On the multiple solutions of the Pell Equation, An­naIs of Math. 30 (1928), 66-72. [5] D. H. LEHMER, An extended theory of Lucas' functions, Annals of Math. 31 (1930), 419-448. [6] E. LUCAS, Theorie des functions numériques simplement périodiques, American Journal of Mathematics, vol. 1 (1878), 184-240, 289-321. English translation: Fibonacci Association, Santa Clara Univ., 1969. [7] S. VÁJDA, Fibonacci &; Lucas numbers, and the golden section, Ellis Horwood Limited Publ., New York-Toronto, 1989. [8] C. R. WALL, Some congruences involving generalized Fibonacci num­bers, The Fibonacci Quarterly 17.1 (1979), 29-33. JAMES P. JONES DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF CALGARY CALGARY, ALBERTA T2N 1N4 CANADA PÉTER Kiss ESZTERHÁZY KÁROLY TEACHERS' TRAINING COLLEGE DEPARTMENT OF MATHEMATICS LEÁNYKA U. 4. 3301 EGER, PF. 43. HUNGARY E-mail: kissp@gemim.ektf.hu

Next

/
Oldalképek
Tartalom