Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 1994. Sectio Mathematicae. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 22)
GRYTCZUK, K., Effective integrability of the differential équation ...
Effective integrability of the differential équation Po{x)y (n ) + Pi{x)y { n~ l ) + • • • + Pn(x)y = o, II. KRYSTYNA GRYTCZUK ABSTRACT. In the present paper we give an application of our resuit given in [1] to the classical Euler's differential équation. 1. Introduction Consider the classical Euler's differential équation (1) zV n ) + aiS B-V n1> + • • • + an^xyV + a ny = 0 where ü{ E R In the paper [1] it was shown (see Th. 2) that the necessary and suffcient condition for the fonctions (2) y = s 0t k(x)ul(x) , k = 1, 2 • • •, n to be the particular solutions of the differential équation (3) Po(x)y {n ) + i\(s)y (n_1 ) + • • • + Pn(x)y = 0 is that n (4) ^2Pj(x)s n_ jf k(x) = 0 , k = 1,2, • • -,n, j=o where s mf k(x) = s' m_ l k(x) + s m-and s mi k(x),u k(x) E C( n)(J); J = (x ux 2) C R, u k(x) £ 0 for x E J. In the present note by using this resuit we prove the following theorem. Theorem. The necessary and sufficient condition for the function y 0 = Ï a to be a particular solution of (1) is that the A satisfies the following algebraic équation: F(X) = A(A — 1) • • • (À — (n — 1)) + ai A(A - 1) • • • (A - (n - 2)) + • • • + a n_ x A + a n = 0.