Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 1994. Sectio Mathematicae. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 22)

GRYTCZUK, K., Effective integrability of the differential équation ...

116 Krystyna Grytczuk 2. Proof of the Theorem. Putting in (2) u k(x) = x , So,*:^) = 1 for k = 1,2, • • •, n we get (6) Vk = Vo = x x. By the définition of the functions s m> k(x) and (6) we obtain (7 ) I Sj(x)A(A - 1)... (A - (i - 1)) j = 1,2, - - -, n By (4) and (7) is follows that (8) Po(z)s n(x) + Pi(®)a n_i(®) + • • • + P n(x)s 0{x) = 0 . On the other hand from (1) we have (9) Po(x) = x n , A(x) = a!^" 1 , • • •, Pn-1 (z) = x n , P n{x) = a n . From (7), (8) and (9) we obtain x nA(A - 1) • • - (A - (n - 1)) x x~ n + aix n~ l\(\ - 1) • • • • • • (A - (n - 2)) x A­( n­x ) + • • • + a nz A = 0 . Let F(X) — A(A - 1) • • • (A - (n - 1)) + + aiA(A - 1) • • • (A - (A - 2)) + • • -a n_iA + a n . Then by (10) and (11) we have (12) F(X)x x = 0. Since x / 0 on J then by (12) we get F(A) = 0, so denote that A must be a root of the algebraic équation A(A - 1) • • • (A - (n - 1)) + aiA(A - 1) • • • (A - (A - 2)) + h a n-1A -f- a n = 0 and the proof is complété.

Next

/
Oldalképek
Tartalom