Vízügyi Közlemények, 1983 (65. évfolyam)

1. füzet - Bartha Péter-Harkányi Kornél-Szöllősi-Nagy András: Folyóhálózat vízszállításának mellékfolyók szerinti felbontása lineáris modellekkel

Folyóhálózat vízszállításának mellék folyók szerinti felbontása lineáris modellekkel 53 — для любого узла системы каскадов можно расчитывать или прогнозировать: полный гидрограф стока с разложением поступающего с вышележащего участка стока по притокам (декомпозиция по происхождению); влияние изолированно учитываемого стока с некото­рого вышележащего участка в формировании актуального расхода воды в расчетном створе; влияние водохозяйственных мероприятий (оперативного управления стоком) на гидрографы нижележащих участков. В целях иллюстрирования теории, в качестве практического примера приводится гидро­граф стока 1980 года по створу Сегед на р. Тисе (pp. 7,— 10.). Установлено сильное влияние стока по притоку Бодрог на расходы воды в Сегеде, кроме этого удалось найти влияние аварийных водохранилищ на притоке Кёрёш, которые в то время были открыты для срезки пиков опасных паводочных волн (рис. 7.). Система линейных каскадов применима для определения пространственно-временного распределения водозапасов русловых сетей древовидной топологии. Получаемая таким образом информация является безусловно фундаментальной при проектировании любого рационального водохозяйственного мероприятия на вышележащих участках. * * * Streamflow decomposition to tributaries in a river system by linear models by P. BARTHA — Dr. K. HARKÁNYI Dr. A. SZÖLLŐSI-NAGY The purpose of the study was to resolve the streamflow in a river system according to tributaries, with regard to the unsteady flow phenomena in the system. The topology of the river network can be composed by the suitable combination of two elementary graphs (Fig. I.). The first graph type represents the elementary model of the topology of two series-connected river sections, while the second type of graphs is the elementary model of a river section with inflow (tributary). Gradually varied unsteady flow over the individual sub-sections is described by the adequate discrete linear model — Eqs. (9) and (10) — corresponding to the continuous cascade of Kalin'in — Milyukov —Nash given by Eqs. (2) and (3). The requirements of continuity, discrete coincidence and transitivity are satisfied in the model. The main conclusions arrived at from the study are as follows: — The first-type topological connection of channel sections having different parameters yields an adequate discrete representation of the sections connected. — The second-type topological connection of channel sections having different parameters yields an adequate discrete representation of the sections connected. — The topology and dynamics of a linear river network of any tree-type topology can be represented adequately by an equivalent cascade network, which contains, however, elementary graphs of the first type only (Fig. 3.). — It is possible to calculate and predict for any junction point of the cascade network: the complete streamflow time series, the streamflow arriving from the sub-network above the junction point resolved according to origin (allocation to tributaries), the effect of runoff considered in isolation over the individual branches (the tributaries) of the network, further the effect of any water management measure along the upstream sections(s) on the flow regime over the downstream section(s). The theoretical results are illustrated by the practical example of the time series of streamflows observed in 1980 in the Szeged gaging section of the Tisza River (Figs. 7 to 10). These reflect the important contribution of the streamflow in the Bodrog River to the conditions in the Szeged section. The effect of the emergency reservoirs established and operated in the tributary Körös river system could also be demonstrated (Fig. 7.). The linear cascade network can be used successfully to trace the geographical distribution and variations of the water supplies in river systems corresponding to tree-topology. Such basic informa­tion is essential to planning any rational water management project affecting the river system.

Next

/
Thumbnails
Contents