Vízügyi Közlemények, 1964 (46. évfolyam)
4. füzet - IV. Perényi Károly: Héjcsatornák az öntözésben
(16) Gesellschaftsarbeitsmenge zu beurteilen, sondern es ist auch in Betracht zu nehmen, wo es bei den verschiedenen Verwendungsmöglichkeiten in der Produktion am nützlichsten wirkt. * * * Verfasser weist zum Schluss darauf hin, dass eine erfolgreiche Durchführung des scharf tempierten Entwicklungsprogramms auch die Sicherstellung der materiellen und technischen Vorbedingungen erfordert. Es werden jene Bedingungen vorgeführt, welche zur vorgehend besprochenen ungarischen wasserwirtschaftlichen Weiterentwicklung am Gebiet der Organisation, Material-, Maschinen- und Instrumentenversorgung zu erfüllen sind. Es kann nicht das Ziel dieser Studie sein, eine eingehende Untersuchung des komplizierten Fragenkomplexes der Beziehungen zwischen regionaler Wasserwirtschaft und den Wasserwirtschaftsbetrieben der Siedlungen und Industrieanlagen zu bieten. Die wichtigste Aufgabe war, einer Bereinigung der Betrachtungweise der gegenseitigen Beziehungen zu dienen. Es tut der Gestaltung eines solchen Aspektes not, welcher einerseits die wasserwirtschaftlichen Gegebenheiten der Gebietseinheiten, andererseits die dialektische Beziehung zwischen den Entwicklungszielsetzungen des Produktions- und Siedlungsnetzes und der inneren Wasserwirtschaft der Betriebe in den Vordergrund stellt. THE ECONOMIC SIGNIFICANCE OF PLANT WATER POLICY By К. Bolberitz, Chem. Eng. (For the Hungarian text see pp. 37) Chapter 1 and 2 are devoted to the economical significance of the water policy followed by industrial plants and to the science of industrial water management. The growing water demand of industrial plants is illustrated in two figures (Figs 1 and 2 ) and it is established that industry as water consumer strives to obtain the largest possible quantity and the best possible quality of water, at the same time attempting to get rid as soon as possible and as easily as possible of its wastes. These aims are contrary to public interest. The task of industrial water management is to ensure for each particular production goal the quantity and quality of water required in the process. Siting of industrial plants and meeting their water demands are dealt with in Chapter 3. Diversion from surface waters must be primarily relied upon for satisfying industrial demands. An economical solution can be attained where the purified sewage of a nearby town can be used for industrial supply. The twofold advantages of this solution are: 1. the industry does not infringe upon the public demand and 2. the recipient is not loaded even by the treated domestic sewage. The increased use of water pumped from the mines is desirable. In selecting the site for an industrial plant the problem of wastes disposal is of paramount significance and this latter aspect rather than that of supply will in the future play a decisive role in industry siting. Water quality problems are discussed in Chapter 4. Quality requirements are steadily increasing, and the refinements in production technologies entail increasingly severe specifications for the quality of water. Alone the poor quality of water may result in wasteful practices (e. g. cooling water), or may ruin entire batches of production (e. g. in the pharmaceutical industry), it may reduce the quantity produced (e. g. in sugar refineries), or it may be detrimental to production equipment (corrosion), etc. For these reasons the most suitable water quality should be ensured for each particular production process. Chapter 5 is devoted to the proper selection of the production technology. The benefits of avoiding water waste are 1. a lower specific water consumption and 2. the production of a smaller volume of wastes. Several techniques have been developed in the industries with large water demand which result in theoretically no consumption. Thus e. g. in the cellulose industry calcium sulphite has been replaced by magnesium, or ammonium salts which can be more readily regenerated. The diagram