Szemészet, 1935 (70. évfolyam, 1. szám)
1935-09-30 / 1. szám
119 pontját a szaruhártya csúcsába helyezzük, az y érték a »szaruhártyaátmérő« felével lesz egyenlő és az ívhossz : d 2 J=^JíVpz + y2 dy Jr o Hogy az integrandot rationalissá tegyük, végezzük el a következő behelyettesítést: V p2~hy2 = y + z akkor y = — ; z = Vp^ + y2 — y; dy = dz. Tehát az ívhossz d y=2 f L y = o p*2p2 Z2 Z* j____ 1 Q (a/Z ' 2 P i----P* 2 (p2 + 2y2 — 2y Yp2 -+- y2) ■ 2p2 ln (Y y2 + p2 — y) ■ p2 -4- 2 y2 — 2y Y V2 + y2 Most lássuk, hogy az élet folyamán mily arányban kell nőni a szaruhártyának és mily arányban az ínhártyanyílásnak, hogy emmetropia álljon elő. Wessely vizsgálataiból tudjuk, hogy az újszülött szemének köbtartalma úgy aránylik a felnőttéhez, mint 1:3, de az ínhártyaátmérőnél ez az arány 4 : 5 (pedig úgy kellene nőni, mint 2:3, t. i. 23 : 33 kb. = 1-3), a szemgolyó görbületi sugara pedig 7 : 8 arányban nő. Pontos ilyirányú vizsgálatok ugyan nincsenek, de természetes, hogy a szaruhártya részére az ínhártyából hiányzó nyílás átmérője is úgy nő, mint az ínhártya többi része, vagyis mint 4:5, ha pedig az egész szemgolyó görbületi sugara 7 : 8 arányban nő, a szaruhártya görbületi sugarának is ily arányban kell nőni, hogy ametropia ne álljon elő. Most a fenti képlet alapján könnyen kiszámíthatjuk, hogy mily arányban nő a fenti feltételek mellett maga a szaruhártya ? Tegyük fel, hogy az újszülött szaruhártyaátmérője (d) 8 mm, a görbületi sugár pedig 7 mm ; akkor a szaruhártya-