Kegyes tanítórendi katolikus gimnázium, Nagykanizsa, 1877
— 34 — felét adjuk s ezen összeget az osztandó legals ó 1) 1) r e n (1 ii egységei ne k v é v e, az o w z t ó v a 1 e 1osztj uk. E szabály helyessége eléggé világos, ha tekintetbe veszszük, hogy az egyes kivont rövidített részlet-szorozmányok hiba-határa a 8. §. szerint általában egyenlő legalsóbb rendű helyök egységének felével, következésképen a <>. §. szerint az utolsó maradék és a valódi maradék között az eltérés kisebb mint a legalsóbb rendű hely annyi egységének fele, a mennyi a rövidített részlet-szorozmányok száma. Mint a rövidített szorzásnál, ugy itt is a hiba-határ kiszámításánál ennek csak legmagasabb rendű vagy legföljebb két legmagasabb rendű jelentős számjegyének meghatározására szorítkozunk. — A megelőző §.-ben véghez vitt rövidített osztásnál maradékul 1-et nyertünk, a rövidített részlet-szorozmányok száma 4 volt, ennek fele 2; mivel az osztandó legalsóbb rendű helyén ezredrészek voltak, 3 a talált hányados hiba-határa, Z/=--—: 75-368=0-00004 A valóságban a hiba kisebb mint 0-0000009. Általában megjegyzendő, hogy az ezen szabály szerint talált hiba-határ szerfölött nagy, mivel annak kiszámításánál csak a legkedvezőtlenebb esetet vettük tekintetbe, rendesen a rövidített osztás által talált hányados utolsó számjegye is vagy teljesen pontos vagy legfölebb egy-két egységgel tér el a valódi számjegytől. 14. §. Ha az osztandó vagy osztó vagy mind a kettő közelítő érték, a hányadosban elérhető pontosság foka az adatok természetétől függ. 1. Két közelítő érték hányadosának hiba-ha tár a egyenlő azon hányadossal, melyet nyerünk.ha az oszt a nd ó hi b a-ha tárához az o s z 1ó hi ba -h at á rá b ól és a h á n y a d o s b ó 1 eredő szoroz m á n y t adjuk s ezen ö s s z eget az osztóval osztjuk. Legyen A és B két tizedes tört, a és & legyenek ezek közelítő értékei, « és L Í a megfelelő hibák, melyekről föltehetjük, hogy általában kisebbek mint 10; az osztandó legalsóbb rendű tizedes he1 1 lyének egységét jelölje s az osztóét akkor y, oí a Tő 5 A a~ "íö™'