Hidrológiai Közlöny, 2021 (101. évfolyam)

2021 / 3. szám

65Zavarkó M., Csedő Z.: Körkörös gazdaságfejlesztési és dekarbonizációs lehetőségek a power-to-gas magyar szennyvíztisztító telepeken... Santarelli, A. Lanzini, D. Ferrero (szerk.): Solar Hydrogen Production. Academic Press, 529-557. ISBN 9780128148532, https://doi.org/! 0.1016/B978-0-12- 814853-2.00015-1. Buttler, A., H. Spliethoff(2018). Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review. Renewable and Sustainable Energy Reviews, 82 (3), 440- 2454. https://d0i.0rg/l0.1016/j.rser.2017.09.003. Ceballos-Escalera, A., D. Molognoni, P. Bosch- Jimenez, M. Shahparasti, S. Bouchakour, A. Luna, A. Guisasola, E. Borrás, M. Della Pirriera (2020). Bioelectrochemical systems for energy storage: A scaled­­up power-to-gas approach. Applied Energy, 260, 114138. https://doi.Org/10.1016/j.apener. Csedő Z, Zavarkó M. (2020). The role of inter­­organizational innovation networks as change drivers in commercialization of disruptive technologies: the case of power-to-gas. International Journal of Sustainable Energy Planning and Management 28, 53-70. https://doi.org/10.5278/ijsepm.3388. Csedő Z, Sinóros-Szahó B., Zavarkó M. (2020). Seasonal Energy Storage Potential Assessment of WWTPs with Power-to-Methane Technology. Energies, 13 (18), 4973. https://doi.org/10.3390/enl3184973. Eggemann, L., N. Escobar, R. Peters, P. Burauel, D. Stolten (2020). Life cycle assessment of a small-scale methanol production system: A Power-to-Fuel strategy for biogas plants. Journal of Cleaner Production 271, 122476. https://doi.Org/10.1016/j.jclepro.2020.122476. Európai Bizottság (2020). Study on energy storage - Contribution to the security of the electricity supply in Eu­rope, Brüsszel: 2020. március. Ferry, J. G. (1998). Enzymology of one-carbon metabolism in methanogenic pathways. FEMS Microbiology 23, 13-38. https://doi.Org/10.l 111/j. 1574- 6976.1999.tb00390.x. Fontaine, F., P. Grima, M. Hoerl, L. Mets, M. Forstmeier, D. Hafenbradl (2017). Power-to-Gas by Biomethanation - From Laboratory to Megawatt Scale. Comm. Appl. Biol. Sei, Ghent University, 82/4, 183-187. Frontera, P., A. Macario, M. Ferraro, P. Antonucci (2017). Supported Catalysts for C02 Methanation: A Review. Catalysts, 7, 59. https://doi.org/10.3390/catal7020059. Götz, M., J. Lefebvre, F. Mörs, A. McDaniel Koch, F. Graf S. Bajohr, R. Reimert, T. Kolb (2016). Renewable Power-to-Gas: A technological and economic review. Renewable Energy, 85, 1371-1390. https://doi.org/10.1016/j .renene.2015.07.066. Gretzschel, O., M. Schafer, H. Steinmetz, E. Pick, K. Kanitz, S. Krieger (2020). Advanced Wastewater Treatment to Eliminate Organic Micropollutants in Wastewater Treatment Plants in Combination with Energy-Efficient Electrolysis at WWTP Mainz. Energies, 13 (14), 3599. https://doi.org/10.3390/enl3143599. Inkeri, E., T. Tynjälä, A. Laari, T. Hyppdnen (2018). Dynamic one-dimensional model for biological methanation in a stirred tank reactor. Applied Energy 209, 95-107. https://doi.org/10.1016/j.apenergy.2017.10.073 Kummer K., Imre A. R. (2021). Seasonal and Multi- Seasonal Energy Storage by Power-to-Methane Technology. Energies 2021, 14, 3265. https://doi.org/10.3390/en 14113265 Kirchherr, J., D. Reike, M. Hekkert (2017). Conceptualizing the circular economy: An analysis of 114 definitions. Resources, Conservation and Recycling Volume, 127, 221-232. https://doi.org/10.1016/j.resconrec.2017.09.005. Lewin, K. (1946). Action research and minority problems. Journal of Social Issues 2 (4), 34-46. https://doi.Org/10.llll/j.1540-4560.1946.tb02295.x. Lund, H., P. A. 0stergaard, D. Connolly, I. Ridjan, B. V. Mathiesen, F. Hvelplund, J. Z. Thellufsen, P. Sorknces (2016). Energy Storage and Smart Energy Systems. Inter­national Journal of Sustainable Energy Planning and Ma­nagement, 11,3-14. https://doi.org/10.5278/ijsepm.2016.11.21. Luo, Y., Y. Shi, W. Li, N. Cai (2018). Synchronous enhancement of H20/C02 co-electrolysis and methanation for efficient one-step power-to-methane. Energy Conversion and Management, 165, 127-136. https://doi.org/10.1016/j.enconman.2018.03.028 McNiff J. (2013). Action Research - Principles and practice. London: Routledge. Oosterkamp, P. (2018). Full CBA Analysis of Power­­to-Gas in the context of various reference scenarios. STORE&GO Project. 0stergaard, A., C. Maestosi (2019). Tools, technologies and systems integration for the Smart and Sustainable Cities to come. International Journal of Sustainable Energy Planning and Management, 24, 01-06. https://doi.org/10.5278/ijsepm.3405. Pintér G., Zsiborács H., Hegedűsné Baranyai N., Vincze A., Birkner Z (2020). The Economic and Geographical Aspects of the Status of Small-Scale Photovoltaic Systems in Hungary—A Case Study. Energies, 13, 3489. https://doi.org/10.3390/enl3133489. Pintér G. (2020). The Potential Role of Power-to-Gas Technology Connected to Photovoltaic Power Plants in the Visegrad Countries—A Case Study. Energies, 13 (23), 6408. https://d0i.0rg/l 0.3390/en 13236408. Pörzse G., Csedő Z, Zavarkó M. (2021). Disruption Potential Assessment of the Power-to-Methane Technology. Energies, 14 (8), 2297. https://doi.org/10.3390/en 14082297. Reason (2001). Handbook of action research: participative inquiry and practice. London: SAGE. Schäfer, M, O. Gretzschel, H. Steinmetz (2020). The Possible Roles of Wastewater Treatment Plants in Sector Coupling. Energies, 13 (8), 2088. https://doi.org/10.3390/en 13082088. Schiebahn, S., T. Grube, M. Robinius, V. Tietze, B. Kumar, D. Stolten (2015). Power to gas: Technological overview, systems analysis and economic assessment for a case study in Germany. International Journal of Hydrogen

Next

/
Thumbnails
Contents