Hidrológiai Közlöny, 2021 (101. évfolyam)

2021 / 3. szám

66 Hidrológiai Közlöny 2021. 101. évf. 3. szám Energy, 40, 4285-4294. https://doi.org/10.1016/j.ijhydene.2015.01.123 Singh, V. K., C. O. Henriques, A. G. Martins (2019). A multiobjective optimization approach to support end-use energy efficiency policy design - the case-study of India. International Journal of Sustainable Energy Planning and Management 23, 55-68. http://doi.org/10.5278/ijsepm.2408. Sinóros-Szabó B., Zavarkó M., Popp, F., Grima, P., Csedő Z. (2018). Biomethane production monitoring and data analysis based on the practical operation experiences of an innovative power-to-gas benchscale prototype. Jour­nal of Agricultural Sciences, 150, 399-410. https://doi.org/10.34101/actaagrar/150/1736 Tricarico, L. (2018). Community Energy Enterprises in the Distributed Energy Geography. International Journal of Sustainable Energy Planning and Management, 18, 81- 94. https://doi.Org/10.5278/ijsepm.2018.18.6. Vandewalle, ./., K. Bruninx, W. D’haeseleer (2015). Effects of large-scale power to gas conversion on the power, gas and carbon sectors and their interactions. Energy Conversion and Management, 94, 28-39. https://d0i.0rg/l 0.1016/j .enconman.2015.01.03 8. Varone, A., M. Ferrari (2015). Power to liquid and power to gas: An option for the German Energiewende. Renewable and Sustainable Energy Reviews, 45, 207- 2018. https://doi.org/10.1016/j.rser.2015.01.049. Vázquez, F. V., J. Koponen, V. Ruuskanen, C. Bajamundi, A. Kosonen, P. Simell, J. Ahola, C. Frilund, J. Elfving, M. Reinikainen, N. Heikkinen (2018). Power-to-X technology using renewable electricity and carbon dioxide from ambient air: SOLETAIR proof-of-concept and improved process concept. Journal of C02 Utilization 28, 235-246. https://doi.org/10.1016/jjcou.2018.09.026. Wall, D., S. McDonagh, J. D. Murphy (2017). Cascading biomethane energy systems for sustainable green gas production in a circular economy. Bioresource technology 243, 1207-1215. https://doi.Org/10.1016/j.biortech.2017.07.l 15. Wang, L., M. Pérez-Fortes, H. Madi, S. Diethelm, F. Maréchal (2018). Optimal design of solidoxide electrolyzer based power-to-methane systems: A comprehensive comparison between steam electrolysis and co-electrolysis. Applied Energy 211, 1060-1079. https://doi.Org/10.1016/j.apenergy.2017.l 1.050 Wulf C., J. Linßen, P. Zapp (2018). Review of Power­­to-Gas Projects in Europe. Energy Procedia, 155, 367-378. https://doi.0rg/l 0.1016/j.egypro.2018.11.041. Zhang, X., C. Bauer, L. C. Mutei, K. Volkart (2017). Life Cycle Assessment of Power-to-Gas: Approaches, system variations and their environmental implications. Applied Energy, 190, 326-338. https://doi.Org/10.1016/j.apenergy.2016.12.098. Zoss, T, E. Dace, D. Blumberga (2016). Modeling a power-to-renewable methane system for an assessment of power grid balancing options in the Baltic States’ region. Applied Energy, 170, 278-285. https://doi.org/10.1016/j .apenergy.2016.02.137. A SZERZŐK ZAVARKÓ MATE a Budapesti Corvinus Egyetem Vezetés és Szervezés Tanszékének doktorandusza, a Power-to-Gas Hungary Kft. üzletfejlesztési igazgatója. CSEDO ZOLTÁN, PhD. habil, a Budapesti Corvinus Egyetem Vezetés és Szervezés Tanszékének tanszék­­vezető egyetemi docense, a Power-to-Gas Hungary Kft. alapítója és ügyvezető igazgatója.

Next

/
Thumbnails
Contents