Hidrológiai Közlöny, 2019 (99. évfolyam)
2019 / 2. szám
Grivalszki Péter: CALTROPe - Innovatív partvédő mű áramlástani vizsgálata szimulációs eljárásokkal 65 Fleit G., Baranya S., Rüther N., Bihs H., Krämer T, Józsa J. (2016). Investigation of the Effects of Ship Induced Waves on the Littoral Zone with Field Measurements and CFD Modeling. Water. 8(7). 300. Flow Science. Inc. (2018). FLOW-3D® Version 12.0. Users Manual. Santa Fe, NM, USA. Gorte B., Vargas-Luna A., Sirmacek B. (2013). Camera- Projector 3D Scanning of a Semi-Submerged Terrain in a Flume. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences. 1I-4AV1. pp. 13-18. Gottlieb S., Shu C.-W. (1998). Total variation diminishing Runge-Kutta schemes. Mathematics of Computation. 61(221). pp. 73-85. Ha H. K, Hsu W. Y, Maa J. P. V. Shao Y. Y, Holland C. W. (2009). Using ADV backscatter strength for measuring suspended cohesive sediment concentration. Continental Shelf Research. 29(10). pp. 1310-1316. Hong Son T, Uijttewaal W. S. J. (2018). Cycloid flows induced by the Large horizontal coherent structures in the vegetated compound channel. E3S Web of Conferences. 40. Article number: 02045. Hong Son T, Ye Q.. Stive M. J. F. (2017). Estuarine Mangrove Squeeze in the Mekong Delta, Vietnam. Journal of Coastal Research. 33(4). pp. 747-763. Intergovernmental Panel on Climate Change (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change IPCC, Geneva, Switzerland. 151. Kamath A., Fleit G., Bihs H. (2019). Investigation of Free Surface Turbulence Damping in RANS Simulations for Complex Free Surface Flows. Water. 11(3). 456. Liu X. D„ Osher S., Chan T. (1994). Weighted essentially non-oscillatory schemes. Journal of Computational Physics. 115(1). pp. 200-212. Maa J. P. Y, Kwon J. I. (2007). Using ADV for cohesive sediment settling velocity measurements. Estuarine, Coastal and Shelf Science. 73(1-2). pp. 351-354. Manh N. V. Merz B.. Apel H. (2013). Sedimentation monitoring including uncertainty analysis in complex floodplains: a case study in the Mekong Delta. Hydrology and Earth System Sciences. 17(8). pp. 3039-3057. Manh N. V.. Dung N. V., Hung N. N., Merz B., Apel H. (2014). Large-scale suspended sediment transport and sediment deposition in the Mekong Delta. Hydrology and Earth System Sciences. 18(8). pp. 3033-3053. Miquel A., Kamath A., Alagan C. M., Archetti R., Bihs H. (2018). Analysis of Different Methods for Wave Generation and Absorption in a CFD-Based Numerical Wave Tank. Journal of Marine Science and Engineering. 6(2). 73. Measurement Science Enterprise (2016). MicroVTM & MicroSTM sensor brossures. Olsen N. R. B. (2018). SSIIM User’s Manual. Norwegian University of Science and Technology, Department of Civil and Environmental Engineering. OpenCFD (2018). OpenFOAM User Guide. Copyright © 2004-2011, 2016, 2017, 2018 OpenCFD Limited. Shields A. (1936). Anwendung der Aehnlichkeitsmechanik und der Turbulenzforschung Auf Die Geschiebebewegung. PhD thesis. Technical University Berlin, Mitteilungen der Preußischen Versuchsanstalt für Wasserbau und Schiflbau. 26. SIEMENS Product Lifecycle Management Software Inc. (2017). STAR-CCM+ User Guide. © 2017 Siemens Product Lifecycle Management Software Inc. Suzuki T, Hu Z, Kumada K, Phan L. K., Zijlema M. (2019). Non-hydrostatic modeling of drag, inertia and porous effects in wave propagation over dense vegetation fields. Coastal Engineering. 149. pp. 49-64. Thanh V. Q., Reyns J., Wackerman C., Eidam E. F, Roelvink D. (2017). Modelling suspended sediment dynamics on the subaqueous delta of the Mekong River. Continental Shelf Research. 147. pp. 213-230. Unverricht D., Nguyen T. C., Heinrich C., Szczucinski W., Lahajnar N, Stattegger K. (2014). Suspended sediment dynamics during the inter-monsoon season in the subaqueous Mekong Delta and adjacent shelf, southern Vietnam. Journal of Asian Earth Sciences. 79(part A), pp. 509-519. US Army Corps of Engineers (2015). Adaptive Hydraulics (AdH) Version 4.5 Hydrodynamic User Manual. Vargas-Luna A. (2016). Role of vegetation on river bank accretion. PhD thesis. Technical University of Delft, Department of Environmental Fluid Mechanics. Vargas-Luna A., Uijttewaal W, Crosato A., Tánczos I., de Vries M. (2013). Effects of vegetation on sediment transport, experience from laboratory measurements. RCEM 2013: 8th Symposium on River, Coastal and Estuarine Morphodynamics, Santander, Spain, pp. 9-13. Wilcox D. C. (1994). Turbulence Modeling for CFD. DCW Industries Inc., La Canada, California, U.S. Zsugyel M. (2016). On the impact of chaotic advection on the mixing around river groynes. PhD thesis. Budapest University of Technology and Economics, Department of Hydraulic and Water Resources Engineering. http://s39.hir, Letöltve: 2019.04.16. https://www.usgs.gov, Letöltve: 2019.04.16. A SZERZŐ GRIVALSZKI PETER Építőmérnöki BSc oklevelét 2016-ban, majd Infrastruktúra-építőmérnök MSc diplomáját 2018-ban szerezte a Budapesti Műszaki és Gazdaságtudományi Egyetemen. Jelenleg az egyetem Vízépítési és Vízgazdálkodási Tanszékének doktorandusza, és a VITUKI Hungary Kft. tudományos segédmunkatársa. A CALTROPe-projekttel a 2016-os Budapesti Víz-Világtalálkozón ismerkedett meg, ezt követően kezdett a témát érintő tudományos kutatómunkába, TDK dolgozat formájában. A dolgozattal kvalifikálta magát az országos fordulóba (OTDK), ahol I. helyezést ért el. 2018-ban a témában írt diplomadolgozata elnyerte a Magyar Hidrológiai Társaság Lászlóffy Woldemár diplomamunka pályázatának Mosonyi Emil különdíját, a Társaságnak 2019 óta tagja. Jelenlegi kutatási területe összetett geometriájú műtárgyak körüli áramlási és morfodinamikai folyamatok kísérleti vizsgálata.