Hidrológiai Közlöny, 2013 (93. évfolyam)

2013 / 5-6. különszám - LIV. Hidrobiológus Napok előadásai

108 HIDROLÓGIAI KÖZLÖNY 2013. 93. ÉVF.5-6. SZ. Bayramoglu G., Tuzun I., Celik G., Yilmaz M., Arica M.Y. (2006) Biosorption of mercury(II), cadmium(II) and lead(II) ions from a- queous system by microalgae Chlamydomonas reinhardtii immobi­lized in alginate beads. International Journal of Mineral Processing 81: 35-43. Canizares-Villanueva, R.O., Gonzalez-Moreno, S., Domtnguez-Boca- negra, A.R. (2001) Growth, nutrient assimilation and cadmium re­moval by suspended and immobilized Scenedesmus acutus cultu­res: influence of immobilization matrix. In: Chen, F., Jiang, Y. (Eds.), Algae and their Biotechnological Potential. Kluwer Publi­shers, Dordrecht, The Netherlands, pp. 147-161. Costa, A., Leite, S. (1991) Metal biosorption bysodium alginate immo­bilized Chlorella homosphaera. Biotechnological Letters. 13: 559— 562. Costa, A., Leite, S. (1992) Cadmium and zinc biosorption by Chlorella homosphaera. Biotechnological Letters. 12: 941-944. De Filippis, L., Hampp, R., Ziegler, H. (1981) The effects of sub-lethal concentrations of zinc, cadmium and mercuryon Euglena (a) Growth and pigments. Pflanzen Physiology 101: 37-47. Fukami, M., (1988) Elects of zinc on metal metabolism on the zinc to­lerant chlorotic mutants of Euglena gracilis. Journal of Agriculture and Biological Chemistry. 52: 2343-2344. Gold, C., Feurtet-Mazel, A., Coste, M., Boudou, A. (2003) Impacts of Cd and Zn on the Development of Periphytic Diatom Communities in Artificial Streams Located Along a River Pollution Gradient. Arch. Environ. Contam. Toxicol. 44: 189-197. Kádár, I. (1995) A talaj-növény-állat-ember tápláléklánc szennyeződé­se kémiai elemekkel. Környezetvédelmi és Területfejlesztési Mini­sztérium, MTA Talajtani és Agrokémiai Kutató Int., Bpest, 372 pp. Labyntseva, R., Ulianenko, T., Kosterin, S. (1998) Effect of heavy me­tal ion on super precipitation and ATPase activity of uterine smooth muscle actomyosin activity. Ukrainskii Biokhimicheskii Zhumal. 70: 271-277. Montéira, C.M., Castro, P.M.L., Malcata, F.X. (2009) Biosorption of zinc ions from aqueous solution by the microalga Scenedesmus ob- liquus. Environmental Chemistry Letters 9 (2): 169-176. Montéira, C.M., Marques, A.P.G.C., Castro, P.M.L., Malcata, F.X. (2010) Characterization of Desmodesmus pleiomorphus isolated from a heavy metal-contaminated site: biosorption of zinc. Water, Air and Soil Pollution 208: 17-27. Morin, S., Coste, M. (2006) Metal-induced shifts int he morfology of diatoms from Riou Mort and Riou Vioi streams (South West France). Arch. Hydrobiol. Suppl. 97-101. Munoz R., Alvarez M.T., Munoz A., Terrazas E., Guieysse B., Mattias- son B. (2006) Sequential removal of heavy metal ions and organic pollutants using an algal-bacterial consortium. Chemosphere 63: 903-911. Naja, G. M., Volesky, B. (2009) Toxicity and Sources of Pb, Cd, Hg, Cr, As, and Radionuclides in the Environment. Omar, H.H. (2002) Bioremoval of zinc ions by Scenedesmus obliquus and Scenedesmus quadricauda and its effect on growth and meta­bolism. Intern. Biodeterioration & Biodegradation 50: 95-100 Perales-Vela, H.V., Pena-Castro, J.M., Canizares-Villaneuva, R.O. (2006) Heavy metal detoxification in eukaryotic microalgae. Che­mosphere 64: 1-10. Prassad, D., Prassad, A. (1987) Altered G-aminolaevulinic acid meta­bolism by lead and mercury in germinating seedlings of Bajra (Pennisetum typhoideum). Journal of Plant Physiology 127: 241- 249. Rai, L., Gaur, J., Kumar, H. (1981) Protective effects of certain environmental factors on the toxicity of zinc, mercury and methylmercury to Chlorella vulgaris. Environmental Research. 25: 250-259. Rai, L., Sing, A., Mallick, N. (1991) Studies on photosynthesis, the associated electron transport system and some physiological variables of Chlorella vulgaris under heavymetal stress. Journal of Plant Physiology 137: 419—424. Schiewer, S., Volesky B. (2000) Biosorption processes for heavy metal removal. In: Lovley DR (ed) Environmental microbe-metal interactions. ASM Press, Washington DC. 329-362. Shrotri, C., Rathore, V., Mohanty, P. (1981) Studies on photosynthetic electron transport, photophosphorylation and CO2 fixation in Zn2+ deficient leaf cells of Zea mays. Journal of Plant Nutrition. 3: 945- 954. Travieso, L., Canizares, R.O., Borja, R., Benitez, F., Dominguez, A. R., Dupeyrón, R., Valiente, V. (1999) Heavy Metal Removal by Microalgae Bull. Environ. Contam. Toxicol. 62:144-151. Tripathi, B.N., Gaur, J.P. (2006) Physiological behavior of Scenedesmus sp. during exposure to elevated levels of Cu and Zn and after withdrawal of metal stress. Protoplasma 229: 1-9. Wang, J.L., Chen, C. (2009) Biosorbents for heavy metals removal and their future. Biotechnology Advances 27: 195-226 Wase, J., Forster, C.F. (2003) Biosorbents for Metal Ions. Taylor & Francis e-Library, UK London. White, C., Wilkinson, S.C., Gadd, G.M. (1995) The Role of Microorganisms in Biosorption of Toxic Metals and Radionuclides. International Biodeterioration & Biodegradation. 17-40. Biosorption of zinc ions by living and dried biomass of the green alga Scenedesmus quadricauda Zoltán Novák Mihály Jánószky 2, Sándor Alex Nagy ', István Bácsi 1 Abstract: Environmental pollution has been become global problem in recent years by human activities, which can be harmful directly to the ele­ments of biosphere and could have indirect effects on living organisms. Heavy metals are one of the most dangerous materials among chemical contaminants. When they are released to the environment, they can cause serious damage to ecosystems. The genera Scenedes­mus and the species Scenedesmus quadricauda is common, ubiquist organisms. They can be easily cultured and maintained in laborato­ry and they are widely used for biotechnological processes. Scenedesmus quadricauda can tolerate zinc in the range of 2,5-15 mg/L co­ncentration, so the species can be characterized with moderate zinc tolerance. The growth rates of the cultures were reduced by the in­creasing zinc contrentations. Maximal zinc removal was observed in the 5mg/L zinc-treated culture (87,6% of the added zinc was remo­ved) and greater part of bound zinc was extracellular (77-89%). Dried biomass could bind significant amount of zinc (56-58%), howe­ver zinc binding of the same amount of living biomass was significantly higher. Keywords: Scenedesmus quadricauda, living biomass, dried biomass, zinc removal.

Next

/
Thumbnails
Contents