Hidrológiai Közlöny 2012 (92. évfolyam)
2. szám - Kováts Nóra–Ács András–Ferincz Árpád–Kakasi Balázs–Kovács Anikó: Lumineszcens baktériumteszt egyes változatainak alkalmazása üledék-toxicitás vizsgálatára
38 HIDROLÓGIAI KÖZLÖNY 2012. 92. ÉVF. 2. SZ. Heinlaan M, Kahru A, Kasemets K, Kurvet I, Waterlot C, Sepp K, Dubourguier, H-C, Douay F. 2007 Rapid screening for soil ecotoxicity with a battery of luminescent bacteria tests. Altern Lab Anim 35: 101-110. Kaur P, Rosen BP. 1992 Plasmid-encoded resistance to arsenic and antimony. Plasmid 27: 29-40. Lahr J, Maas-Diepeveen JL, Stuijfzand SC, Leonards PEG, Drüke JM, Lücker S, Espeldoorn A, Kerkum LCM, van Stee LLP, Hendriks AJ. 2003. Responses in sediment bio assays used in the Netherlands: Can observed toxicity be explained by routinely monitored priority pollutants? Water Res 37: 1691-1710. Lappalainen J, Juvonen R, Nurmi J, Karp M. 2001. Automated color correction method for Vibrio fischeri toxicity test. Comparison of standard and kinetic assays. Chemosphere 45: 635-641. Lappalainen J, Juvonen, R, Vaajasaari K, Karp M. 1999. A new flash method for measuring the toxicity of solid and colored samples. Chemosphere 38(5): 1069-1083. Lee HJ, Villaume J, Cullen DC, Kim BC, Gu MB. 2003. Monitoring and classification of PAH toxicity using an immobilized bioluminescent bacteria Biosens Bioelectron 18: 571-577. Macken A, Giltrap M, Foley B, McGovern E, McHugh B, Davoren M. 2008. An integrated approach to the toxicity assessment of Irish marine sediments: Validation of established marine bioassays for the monitoring of Irish marine sediments. Environ Int 34: 1023-1032. Miché L, Belkin S, Rozen R, Balandreau J. 2003. Rice seedling whole exudates and extracted alkylresorcinols induce stress-response in Escherichia coli biosensors Environ Microbiol 5(5): 403-411. Min J, Kim EJ, LaRossa RA, Gu MB. 1999. Distinct responses of a recA: :luxCDABE Escherichia coli strain to direct and indirect DNA damaging agents. Mutat Res 442:61-68. Mitchell RJ, Gu MB. 2004. An Escherichia Coli iosensor capable of detecting both genotoxic and oxidative damage Appl Microbiol Biotechnol 64: 46-52. Mortimer M, Kasemets K, Heinlaan M, Kurvet I, Kahru A. 2008. High throughput kinetic Vibrio fischeri bioluminescence inhibition assay for study of toxic effects of nanoparticles. Toxicol In Vitro 22: 1402-1417. Nipper M, Carr RS, Biedenbach JM, Hooten RL, Miller K. 2002 Toxicological and chemical assessment of ordnance compounds in marine sediments and porewaters. Mar Pollut Bull 44: 789-806. Oh J-T, Cajal Y, Skowronska EW, Belkin S, Chen J, Van Dyk TK, Sasser M, Jain MK. 2000. Cationic peptide antimicrobials induce selective transscription of micF and osmY. Escherichia coli. Biochem Biophys Acta 1463: 43-54. Peitzsch N, Eberz G, Nies DH. 1998. Alcaligenes eutrophus as a bacterial Chromate sensor. Appl Environ Microbiol 64: 453-458. Pollumaa L, Kahru A, Eisenträger A, Reiman R, Maloveryan A, Ratsep A. 2000 Toxicological inestigations of soils with the solid-phase Flash assay: comparison with other ecotoxicological tests. Altern Lab Anim 28: 461-472. Pollumaa, L, Kahru A, Manusadzianas L. 2004. Biotest- and chemistry-based hazard assessment of soils, sediments, and solid wastes. J Soil Sediment 4(4): 267-275. Ramanathan S, Shi W, Rosen BP, Daunert S. 1997. Sensing antimonite and arsenite at the subattomole level with genetically engineered bioluminescent bacteria. Anal Chem 69: 3380-3384. Ribera D, Saint-Denis M. 2002. Evaluation des dangers et gestion des risques. Quelques perspectives en écotoxicologie animale. Bull. Soc. Zool. France 127: 329-341. Ringwood AH, DeLorenzo ME, Ross PE, Holland AF. 1997. Interpretation of Microtox solid-phase toxicity test: the effects of sediment composition. Environ. Toxicol Chem 16: 1135-1140. Ripp S, Nivens DE, Ahn Y, Werner C, Jarrel IVJ, Easter JP, Cox CD, Burlace RS, Sayler GS. 2000. Control field release of a bioluminiscent genetically engineered microorganism for bioremediation process monitoring and control. Environ Sei Technol 34: 846-853. Scott DL, Ramanathan S, Shi W, Rosen BP, Daunert S. 1997. Genetically engineered bacteria: electrochemical sensing systems for antimonite and arsenite. Anal Chem 69: 16-20. Selifonova O, Burlage R, Barkay T. 1993. Bioluminescent sensors for detection of bioavailable Hg(II) in the environment. Appl Environ Microbiol 59: 3083Shi W, Dong J, Scott RA, Ksenzenko MY, Rosen BP. 1996. The role of arsenicthiol interactions in metalloregulation of the ars operon. J Biol Chem 271: 9291-9297. Tauriainen S, Karp M, Chang W, Virta M. 1997 Recombinant luminescent bacteria for measuring bioavailable arsenite and antimonite. Appl Environ Microbiol 63: 4456-4461. Tauriainen S, Karp M, Chang W, Virta M. 1998. Luminescent bacterial sensor for cadmium and lead. Biosens Bioelectron 13: 931-938. Tibazarwa C, Corbisier P, Mench M, Bossus A, Solda P, Mergeay M, Wyns L, van der Lelie D. 2001. A microbial biosensor to predict bioavailable nickel in soil and its transfer to plants. Environ Pollut 113: 19-26. Trögl J, Kuncová G, Kubicová L, Parik P, Hálóvá J, Demnerová K, Ripp S, Sayler GS. 2007. Response of the bioluminescent bioreporter Pseudomonas fluorescens HK44 to analogs of naphthalene and salicylic acid. Folia Microbiol 52: 3-14. Trögl J, Ripp S, Kuncová G, Sayler GS, Churavá A, Parik P, Demnerová K, Hálóvá J, Kubicová L. 2005. Selectivity of whole cell optical biosensor with immobilized bioreporter Pseudomonas fluorescens HK44. Sens.Actuators B: Chem. 107: 98-103. Tung KK, Scheibner B, Miller T, Bulich AA. 1990. A new method for testing soil and sediment samples. Presented at the SET AC Conference, Nov. 1990. Valdman E, Battaglini F, Leite SGF, Valdman B. 2004. Naphthalene detection by a bioluminescence sensor applied to wastewater samples. Sens Actuators B: Chem 103: 7-12. Valdman E, Valdman B, Battaglini F, Leite SGF. 2004. On-line detection of low naphthalene concentrations with a bioluminescent sensor. Process Biochem 39: 1217-1222. Van Dyk TK, Majarian WR, Konstantinov KB, Young RM, Dhuijati PS, LaRossa RA. 1994. Rapid and sensitive pollutant detection by induction of heat shock gene-bioluminescence gene fusions. Appl Environ Microbiol 60: 1414-1420. Van Dyk TK, Reed TR, Vollmer AC, and LaRossa RA. 1995a. Synergistic induction of the heat shock response in Escherichia coli by simultaneous treatment with chemical inducers. J Bacteriol 177: 6001-6004. Van Dyk TK, Smulski DR, Reed TR, Belkin S, Vollmer AC, LaRossa RA. 1995b. Responses to toxicants of an Escherichia coli strain carrying a usp AD:: lux genetic fusion and an E. coli strain carrying a grpED:: lux fusion are similar. Appl Environ Microbiol 61: 4124—4127. Viguri JR, Irabien MJ, Yusta I, Soto J, Gómez J, Rodriguez P, Martinez-Madrid M, Irabien JA, Coz A. 2007. Physico-chemical and toxicological characterization of the historic estuarine sediments: A multidisciplinary approach. Environ Int 33: 436-444. Vollmer AC, Belkin S, Smulski DR, Van Dyk TK, LaRossa RA. 1997. Detection of DNA damage by use of Escherichia coli carrying recAD:: lux, uvrAD:: lux, or alkAD:: lux reporter plasmids. Appl Environ Microbiol 63: 2566Vollmer AC, Belkins S, Smulski DR, Van Dyk TK, LaRpsa RA. 1997. Detection of DNA damage by use of Escherichia coli carrying recA::lux , uvrA::lux, or alkA::lux reporter plasmids. Appl. Environ. Microbiol. 63 (7): 2566-2571. Wang F, Leung AOW, Wu SC, Yang MS, Wong MH. 2009. Chemical and ecotoxicological analyses of sediments and elutriates of contaminated rivers due to e-waste recycling activities using a diverse battery of bioassays. Environ Pollution 157: 2082-2090. Wu J, Rosen BP. 1991. The ArsR protein is a trans-acting regulatory protein. Mol Microbiol 5: 1331-1336. Yagi K. 2007. Applications of whole-cell bacterial sensors in biotechnology and environmental science Appl Microbiol Biotechnol 73: 1251-1258 A kézirat beérkezett: 2011. december 5-én. Applicability of different versions of the Vibrio fischeri bioluminescence inhibition bioassay for assessing sediment toxicity N. Kováts, A. ÁcSy A. Kovács y Á. Ferincz, B. Kakasi Abstract: The bioassay based on the bioluminescence inhibition of the bacterium Vibrio fischeri has generally been applied for testing the ecotoxicity of sediments. The original version of the test is applicable for aquaeous samples, namely pore water and elutriate. However, they cannot represent the toxicity of particle-bound contaminants. In order to solve this problem, there are whole sediment V. fischeri tests where the test organisms are in direct contact with the sediment. The newest version of direct contact tests is the Flash System, which was standardised in 2010. This system is based on kinetic measurement and in this way is capable to avoid virtual toxicity caused by to turbid and/or coloured samples. Another field of developments is the application of recombinant bacteria, also being capable to emit light and/or show specific sensitivity to some contaminants. Keywords: sediment toxicity, Vibrio fischeri, Microtox, Flash System, recombinant bacteria