Hidrológiai Közlöny 2008 (88. évfolyam)

2. szám - Marton Lajos: A hidrogeológia alapvető hidraulikai kérdései: A zárt és átszivárgó vízadó rendszerek hidraulikájának áttekintése

10 HIDROLÓGIAI KÖZLÖNY 2008. 88. ÉVF. 2. SZ. De Wiest, RJM (1969): Fundamental principles of ground-water flow. In "Flow through porous media" Ed. by De Wiest. Academic Press, New York-London. Forchheimer DH (1898): Grundwasserspiegel bei Brunnenanlagen, Z. Ös­terreichische Ing. Ver. 50, 629-635, 645-648 Freeze RA and Witherspoon PA (1966): Theoretical analysis of regional groundwater flow: 1. Analytical and numerical solutions to the mathe­matical model. Water Resources Res. Vol. 2. No.4. 641-656. Freeze RA and Witherspoon PA (1967): Theoretical analysis of regional groundwater flow: 2. Effect of water-table configuration and subsurface permeability variation. Water Resources Res. Vol. 3. No. 2. 623-634. Garmonov IV, AV Ivanov, VM Szugrobov (1960): Intake and discharge a­reas of artesian waters in Eastern part of the West-Siberian lowland. Conference of the IAH held in Copenhagen in August 1960. Moscow Halász B (1975): Rétegzett hidrogeológiai rendszerek sajátosságai. Hidroló­giai Közlöny, 55 (11): 505-507 Halász B (1988): Kutakhoz való nempermanens hozzáfolyás rétegzett táro­lókban. Hidrológiai Közlöny 68 (4): 213-216 Halász B, Székely F (1979): Computation of drawdown in wells in stratified aquifer systems. Proc. of 1AH Congress "Methods for Evaluation of Groundwater Resources", Vilnius, v. XV. 1: 50-53. Hantush MS (1956): Analysis of data from pumping tests in leaky aquifers. Trans. Am. Geophys. Union, 37, 702-714 Hantush MS (1960): Modification of the theory of leaky aquifers. J. of Geo­phys. Res., v. 65,3713-3725. Hantush MS (1964): Hydraulics of wells. In: VT Chow (ed). Advances in Hydroscience, vol.1, 281-432, Academic Press, New York. Hantush MS and CE Jacob (1955): Non-steady radial flow in an infinite lea­ky aquifer and non-steady Green's functions for an infinite strip of leaky aquifer, Trans. Am. Geophys. Union. 36, 95-112. Hubbert M King (1940): The theory of ground water motion. Journal of Ge­ology, pp. 785-944. Jacob CE (1940): On the flow of water in an elastic artesian aquifer. Trans. of Am. Geophys. Union, v. 22, 574-586 Jacob CE (1946): Radial Flow in a Leaky Artesian Aquifer, Transactions of Am. Geophysical Union, v. 27, 198-208 Karácsonyi S és Scheuer Gy (1969): Vízföldtani megfigyelések Dunaújvá­ros környékén. Hidrológiai Közlüny, 49, 3: 116-126. Karácsonyi S és Scheuer Gy (1972): A dunai magaspartok vízföldtani sa­játosságai. Hidrológiai Közlöny, 52. 9: 375-383. Karácsonyi S, Scheuer Gy (1978): Experiences of the observation of confi­ned aquifers at Dunaújváros. In: Hydrogeology of Great Sedimentary Basins. Conference of Bpest, May/Jun 1976. Műszaki K., Bp., 370-379 Marton L (2000): Debrecen I. és II. vízművek vízbázisainak hidrogeológiai vizsgálata. Jelentés a VlTUKI Rt. részére. Marton L, Szanyi J (2000): A talajvíztükör helyzete és a rétegvíztermelés kapcsolata Debrecen térségében. Hidrológiai Közlöny, 80 (1) 3-13. Marton L (2007): Alkalmazott hidrogeológia. Kézirat, nyomdai kiadása elő­készületben) Mjatiev AN (1947): Napomüj kompleksz podzemnüh vod. Akad. Nauk, O­TN. No. 9. 1069-1088. Meinzer OE (1928): Compressibility and elasticity of artesian aquifers, Ec­on. Geol. 23,263-291. Narasimhan TN (1998): Hydraulic characterization of aquifers, reservoir rocks, and soils: A history of ideas. Water Resour. Res. 34 (1) 33-46. Neuman SP, Witherspoon PA (1969a): Theory of flow in confined two a­quifer system. Water Resources Res., Vol. 5, p. 803-816. Neuman SP, Witherspoon PA (1969b): Applicability of current theories of flow in leaky aquifers. Water Resour. Res., Vol. 5, p. 817-829. Neuman SP, Witherspoon PA (1972): Field determination ofhydraulic pro­perties of leaky multiple aquifer systems. Water Resources Res., Vol. 8, p. 1284-1298 Renard P (2005): The future ofhydraulic tests. Hydrogeology Journal 13 (l):259-262. Schoeller H (1962): Les eaux souterraines. Hydrologie, dinamique et chimi­que. Recherche, Exploitation et Evalution des Ressources. Masson & Cie, Paris. Slichter CS (1899): Theoretical investigation of the motion of ground wa­ters, Annu. Rep. 19, part II. US Geol. Surv. Szilin-Bekcsurin AI (1965): Dinamika Podzemnih Vod, Moszkva. Székely F (1988): Kutak depressziójának számítása korlátozott kiterjedésű, rétegzett hidrogeológiai rendszerekben. Hidrológiai Közlöny, 68 (4): 217-223. Theis CV (1935): The relation between the lowering of the piezometric sur­face and the rate and duration of discharge of a well using groundwater storage. Trans.Am. Geophysical Union , 16th Annual Meeting, part 2. 519-524 Theis CV (1940): The source of water derived from wells - essential factors controlling the response of an aquifer to development. Civil Eng., Am. Soc. Civil Eng., 277-280 Thiem G (1906): Hydrologische Methoden. Gebhardt, Leipzig, pp 56 Tóth J (1962): A theory of groundwater motion in small drainage basins in Central Alberta, Canada. J. Geophys. Res. Vol. 67 (11): 4375-4387. Tóth J (1963): A theoretical analysis of groundwater flow in small drainage basins. J. Geophys. Res. Vol. 68 (16): 4795-4812 Tóth J, Almási I (2001): Interpretation of observed fluid potential patterns in a deep sedimentary basin under tectonic compression: Hung. Great Plain. Pannonian Basin. Geofluids, Vol. 1, No. 1, February 2001, 11-36. Vágás I (1962): A Bolyai-geometria talajvízszínsüllyesztés-elméleti vonat­kozásai. Hidrológiai Közlöny 42 (5): 399-410. Vágás I (1986): A nem-euklideszi vízmozgások. Hidrológiai Közlöny 66 (6): 319-322. Vágás I (1994): Non-Euclidean approach of flow on an Euclidean plane and its description with complex variables. Periodica Polytechnica Ser. Civil Eng. 38 (3): 339-365 Vágás I (1999): Nem-euklideszi műszaki síkgeometria (hidraulikai alkalma­zásokkal). Szeged Vágás I (2000): Szivárgások a folyómederből. Hidr. Közi., 80 (2): 126-127 Wenzel LK (1936): The Thiem method for determining permeability of wa­ter-bearing materials, Report Water-Supplyy Paper 679-A, US Geol Surv, Washington, DC Walton WC (1960): Leaky artesian aquifer conditions in Illinois: Report of Investigation No. 39, Illinois State Water Survey, 1960. Walton WC (1970): Groundwater Resource Evaluation, McGraw-Hill, New York. A kézirat beérkezett: 2007. október 11-én MARTON LAJOS dr., oki. vízépítő mérnök, a műszaki tudomány kandidátusa (hidrológia), 1951-ben kap diplomát a Budapesti Műszaki Egyete­men. A fővárosban, majd 1966-tól Debrecenben dolgozik, hidrogeológiai és izotóphidrológiai kutatásokat végez, másodállásban főiskolai docens, később a Magyar Állami Földtani Intézet tudományos tanácsadója. Jelenleg az MTA Debreceni Területi Bizott­ságában a Hidrológiai Munkabizottság elnöke. 2007-ben elkészült az Alkalmazott Hidrogeológia c. könyvének kézirata. Basic features of hydraulics in hydrogeology: review of hydraulics of confined and leaky aquifers Marton, L. Abstract: A principal issue of hydrogeology is to what extent stratified geologic formations are permeable or closed to moving water. During the evolution of ground­water hydraulics during the last hundred and fifty years numerous problems have been solved, although conceptual differences still remain. After the publication of Darcy's law (1856) Dupuit (1863) provided the first analytical solutions to steady-state groundwater flow to wells in confined and unconfined aquifers. In 1870 A. Thiem modified Dupuit's formulae, but it took 40 years before these equations were used for well-test interpretation (Thiem 1906). The Dupuit-Thiem formula has been known as the equilibrium equation. The concept of an ideally confined aquifer of infinite areal extent producing water from storage by elastic co­mpression and without recharge was formulated by Theis. The Theis, or non-equilibrium formula has introduced the time factor into the equation of radial flow to a well. In later works, the concept of multi-aquifer systems were developed in which aquifers can receive water through subjacent and superjacent aquitards. The problem was mathematically analysed first by Dutch hydrologists and engineers, and later by Jacob and Hantush. The first important Russian contribution on this subject came from Mjatiev, who analyzed the interaction of pervious strata separated by semiconfining beds. Hubbert (1940) published "The Theory of Ground-Water Motion", a paper that still remains definitive. He examined the physical meaning of the fluid potential, derived a tangent law for the refraction of flow lines, and established the foundations for the study of regional groundwater systems. In the 1960's attention has a­gain turned to the regional scale, with the groundwater basin as the unit of hydrological study. Tóth (1962, 1963) obtained solutions by analytically modeling flow patterns in a two-dimensional homogeneous basin for two different water-table configurations. Freeze and Whitherspoon (1966, 1967) followed up the work by developing a method of analysing regional groundwater flow based on numerical mathematical models. The works of two Hungarian researchers. Halász and Székely (1979) in the context of leaky aquifer systems are worth to mention. Development of hydraulics ba­sed on higher mathematics related to the non-Euclidean Bolyai geometry represents a distinct Hungarian contribution to the science. Vágás (1994, 1999) has shown that the set of curves giving the general solution of the differential equation y — y / can be described by exponential equations and also has properties characteristic of non-Euclidean geometries in the Euclidean plane. The geometry of exponential lines corresponds to the Bolyai geometry in many theorems. It was revealed that the ka factor in the Bolyai geometry (known as Bolyai inflexion length) was the same as the "leakage factor" B in modem hydraulics. It was thus shown that some geometric statements can be considered to be expressions ofhydraulic concepts at the same time. Key words: hydrogeology, hydraulics, confined and leaky aquifer systems, non-Euclidean geometry

Next

/
Thumbnails
Contents