Hidrológiai Közlöny 1999 (79. évfolyam)

4. szám - Imre Emőke–Czap Zoltán–Telekes Gábor: Az árvízvédelmi töltéseket is alkotó telítetlen talajok feszültségi állapotváltozói

IMRE E. - CZAP Z - TELEKES G :A telitetlen talajok feszültségi állapotváltozói 199 AV V = C s(a-u w)+C Pu > amelybe behelyettesítve a (2) képletet f ^ ^ = Cc CT- 1--H" U AV V \ w (3) (4) 3.4. A hatékony feszültség fogalom kiterjesztése telí­tetlen talajokra Számos próbálkozás irányult a hatékony feszültség fo­galom telítetlen talajokra történő kiterjesztésére. Itt há­rom javaslatot említünk. • Croney, Coleman és Black (1958) egyenlete: CT' = CT - Pu w, (5) ahol (3 a szívástól függő, a kötésszámot kifejező tényező. • Bishop (1959) egyenlete: CT' = (o = u a)+x(u a ~u w), (6) ahol x a telítettségtől fiiggő paraméter. • Richards (1966) egyenlete: a' = (a - u a)+ x m(h m + u a )+ X s(h s + ua). ( 7) ahol h m és h s a metrikus és ozmotikus szívás, Xm és % s a metrikus és ozmotikus szívás paramétere. A (5) - (7) képletek különböző anyagjellemzőket is tartalmaznak, ezért egyik sem lehet feszültségi állapotvál­tozó definíció. 3.5. Két független feszültségi állapotváltozó A hatékony feszültség fogalom telitetlen talajokra való kiterjesztésére irányuló törekvések alapvetően azért nem vezethettek sikerre, mert a fá­zisok nagyobb száma miatt több ftlggetlen feszültségi állapotváltozó be­vezetése szükséges Először Coleman (1962), majd Bishop és Blight (1963) javasolta több független feszültségi változó hasz­nálatát. Kontinuummechanikai tárgyalás Matyas és Rad­hakrishna (1968), majd Fredlund és Morgenstern (1977) munkáiban található. A következő fejezet az utób­bi szerzők munkáit foglalja össze elhelyezve a témakör­ben elért hazai eredményeket is. 4. A Saskatchewani Iskola eredményei Fredlund és Morgenstern (1977) kritériumokat dol­gozott ki a feszültségi állapotváltozók megállapítására. E­zek alapján igazolta, hogy korábban Terzaghi egy feszült­ségi állapotváltozót definiált, továbbá igazolta a telítetlen talajok javasolt feszültségi állapotváltozóit. 4.1.Kritériumok Fredlund és Morgenstern (1977) a következő kritéri­umokat adta a feszültségi állapotváltozók megállapítására. Csak azok a mennyiségek lehetnek feszültségi állapotvál­tozók, amelyek a) gyakorlati célokból kedvezőek, b) elméletileg alátámaszthatók, c) kísérletileg igazolható módon egyértelmű fizikai e­gyenletet szolgáltatnak 4.2 Gyakorlati szempontok Mérhető feszültségek A feszültségi állapotváltozókat mérhető feszültségek függvényében kell megadni Talajok esetén három mér­hető feszültség van: teljes feszültség, póruslégnyomás és pórusvíznyomás. Ezek nagyság szerinti sorrendje kötött; CT>U a>u w (8) Feszültségi határállapotról beszélünk abban az esetben, amikor valamely helyen az egyenlőtlenség helyett egyen­lőség teljesül. A telített-telítetlen állapot közötti átmenet matematikailag a következőképpen írható le: U á = U w (9) A feszültségi állapotváltozók száma A feszültségi állapotváltozók száma maximum annyi lehet, mint a mérhető feszültségeké, de célszerű a feszült­ségi állapotváltozók számát a lehető legkisebbre korlátoz­ni. Ez elérhető, ha "referencia" változót jelölünk ki, és ké­pezzük a többi mérhető feszültségnek az ezzel való kü­lönbségét. Az összes lehetséges kombinációt (más-más mérhető feszültség a referenciaváltozó) végigvizsgálva azt a kombinációt fogaduk el, amely esetén a referencia­változó, mint önálló feszültségi állapotváltozó szerepe el­hanyagolható. Telített talajok esetén a lehetséges referenciaváltozó a teljes feszültség (a) és a pórusvíznyomás (u w) és az ezek­kel képzett kombinációk pedig a következők : ( a~ uw)> uw> 0°) (CT-U W),CT, (11) ahol (CT - u w) a hatékony feszültség. A (10) képlet szerint kombináció, azaz a (ct - u w) és u w két független feszültségi állapotváltozó használata elfogadott, mivel u w szerepe általában elhanyagolható (a szemcsék kompresszibilitása kicsi, a víznek nincs nyírószilárdsága), így tehát a (ct - u w) hatékony feszültség lenne jó a telített talaj feszültségi állapotváltozójaként. Telítetlen talajok esetén lehetséges referenciaváltozók a teljes feszültség (ct), a pórusvíznyomás (u w) és a pórus­levegő-nyomás (u a), a lehetséges feszültségi állapotválto­zó kombinációk pedig á következők : (c-u a),(u a-u w)u a > (12) (CT-u w)l(u a-u W b UW > (13) (CT-U a),(CT-U w),CT, (14) ahol (o - u„) a redukált vagy nettó feszültség, (u a - u w) a szívás. Határesetben (u a = u w) az utóbbi (12) - (14) kom­binációk az előbbi (10) - (11) kombinációkra vezetnek. A három kombináció közül a (12) használata az elfogadott, mivel u a sok esetben állandó (atmoszferikus). így tehát a (CT - u a) a redukált feszültség és a (u a - u w) szívás lenne a legkedvezőbb a telítetlen talaj két független feszültségi állapotváltozójaként 4.3. Elméleti igazolás A talaj mechanikai viselkedését és a szilárd váz egyensúlyát ugyanazok a feszültségi állapotváltozók határozzák meg. A fe­szültségi állapotváltozókkal ezért ki kell tudnunk fejezni a talaj szilárd vázának egyensúlyát. A szilárd váz egyensúlyi egyenletét úgy kapjuk, hogy a teljés élem egyensúlyi egyenletéből levonjuk áz egyes fá­zisok egyensúlyi egyenleteit. Ehhez feltételezik, hogy a fázisok független, folytonos, egybeeső feszültségmezővel jellemezhetők, és a szuperpozíció elve alkalmazható (Fredlund és Morgenstern, 1977)

Next

/
Thumbnails
Contents