Hidrológiai Közlöny 1981 (61. évfolyam)

4. szám - Dr. Benedek Pál–Dr. Bulkai László: Víztisztítási eljárások hatásossága a szerves mikroszennyezők eltávolítása szempontjából

Dr. Benedek P.—dr. Bulkai L.: Víztisztítási eljárások Hidrológiai Közlöny 1981. 4. sz. 181 [45] Stettler, P.: Utilisation de I'ozone dans le traitement des eaux de boisson. Gaz—Eaux—Eaux usées. 1 sz. 1977. [4t>] Kooij, I).: Einige bakteriologische Aspekte der Trinkwasseraufbereitung mittels Aktivkohlefiltra­tion. Engler — Bunte Institut der Universitat Karlsruhe — Veröffentlichungen. Heft 9. 1975. [47] Eberhardi, M.—Madsen, S.—iSontheimer, //.: Un­tersuchungen zur Verwefidung biologisch arbeiten­der Aktivkohlfilter bei der Trinkwasseraufberei­tung. GWF, 6 sz. 1975. [48] Sontheimer, H. und Maier, D.: Untersuehungen zur Verbesserung der Trinkwasseraufbereitungs­technologie am Niederrhein, GWF, 4 sz. 1972. [49] Sontheimer, H. and Friek, B.: State of the art on the use of activated carbon filters in drinking water treatment. IW'SA Conference on the use of activa­ted carbon in water treatment. Brussels, May 1979. [50] Pice, G., C. Gomella, and W. Miller: Rouen, Francé water-treatment plánt: good organics an ammónia removal with no need to regenerate carbon beds. Civil Engineeririg. ASCE, May, 1978. [51 ] Kőrös Z.: Az ivóvíz aktívszenes és ózonos keze­lése. Hidrológiai Közlöny, 4 sz. 1979. [52] Kelemen B.: Aktívszenes adszorpció a vízkezelés­ben. VITUKI Tudományos Napok, Kézirat. 1980. Budapest [53] Mikroszennyező anyagok vizsgálata a Dunán. VITUKI témabeszáinoló. Témaszám: A—12.00. 7411—3007. 1979. Budapest [54] DVGWEignung von Oberflachenwassern als Roh­stoff fiir die Trinkwasserversorgung Arbeitsblatt W151 .Z.f.GW Verlag Frankfurt/M. 1975. [55] Santema, P.: The pollution of the Rhine: the perspective for improvement. Water Research Centre Conference. I'aper (5. 1979. [56] Zwjntscher, K.: Die Gewásserverunreinigung als Kostenfaktor fiir die Trinkwasserversorgung in volks- und betriebwirt-schaftlicher Sicht. G.W.A. Band 19. RWTW Aachen (NSZK) 1975. [57] Bulkai-Hulin-Kőrös-Reissaus: Zur Messung der Wechselwirkung zwischen Aktivkohle und Wasser­inhaltstoffen Aeta hydrochim.hydrobiol. 3. sz. 1979. OÖ 3(})(|)€KTILBH0CTH MeTOJlOB BOFLOOMHCTKH B CMbicjie yuajieHHH opraHHiecKyx iviHKpo3arp>i3HHTejieü JJ-p EenedeK, FI.KaHAHAaTbi TCXH. HayK—d-p EyAKau, JI. B noBepxHocTHbix BOAax n, nacTHMHo, B BOAax Gepe­roBoü íjjHjibTpauHH BCTpenaioTCH MHome BHAI>I opraHH­MeCKIIX COeAHHeHHH, KOTOpbIC CHCTCMarH3HpOBaHbI aBTO­paMH B maöA. 2. floGpyio MacTb opraHHMecKoro coflep­waHHÍI, BbipanoeMoro B Í10C cocTaBjijiioT ryMHHOBbie H (JjyjlbBHHOBbie KHCJIOTbl, KOTOpbie nOfl flefiCTBHeM XJTO­pwpoBaHUM ripeBpamaK)TC5i n TpHrajiOMeTaHbi — onac­Hbie MHKp03arpH3HHTejIII. .Qojlíl COAepHOHHfl COGCTBCHHO MHKpo3arpji3Hinejieií nesnamiTeAbHa. K CMaerbio Matcpo­M0jiei<yji>ipnbie oprammecKne BemecTBa (npeKy3opbi) MacTiiHHo yfla^jnoTCH npn ocBeTAeHim (na 40—60%). IlpoöjieMa npeK)'3opoe CHOBa noflMepioiBaeT BawcnocTb oceeniAenuH a (fiuAbmpupoeanun na necnaHbix c/iuAbmpax c ebicoicoú 3(J)(f)eKmu6Hocmbw. Bo B3BeujeHHbix lacnmax aGcopOiipycTOi MHoro Miii<po3arp>i3HHTejieií: apoiwaTH­MecKite yr^eBOflop/tbi, necTHUHAbi, oprammecKHe coeAii­HeHHji xjiopa (PCB) h T.n. OcBeTJieHHeM h ({nuibTpoBa­HHCM MO>KHO COKpaTHTb II KOHUeHTpaqiUO I10CJie«HHX. 0>KH;iaeMoe coKpameHHe XIOC cocTaBjijieT 60%. ABTOpi.l HCCJieAOBajlH B03MOOHOCTH COKpaiUCHHÍl pacT­BopeHHbix oprammecKiix MiiKpo3arp>i3HiiTejieií nocpeA­CTBOM öepeeoeoií (fiuAbinpaiimi, oóoeatiienu.H 3anacoa nod­3eMnbix eod H MEA-NEHHORO (JMJIBTPOBAHWI. OTMCMCHO, HTO 3(|)<])eKTHBH0CTb 3THX MeTOAOB 3aBHCHT OT MHOTHX (J)aKTO­poB, npHMeM npeoöJiaflaiomyK) poAb mpaioT fiHOJiorn­MecKne MexaiiH3Mbi AeiicTBHii. K coHíajiemuo OyAymee B OTHOLlteHHH BOA GeperOBOH (J)HJlbTpai(HH TaK>Ke MajlO oGHaAe>KiiBaioinee, no3To,viy aBTopbi ocnoBaTCJibHo pac­CMOTpCJIH COBpeMeHHbie anCOpíiUHOHHbie H 0KHC.HHTe.ilb­Hbie MeTOflbi BOFLOOMHCTKH. HCXOAH H3 3apyöe>KHoro H OTCMecTBGHHoro onbiTa B rji. 4. cocTaBJieH pjiA saMcia­HHH. BHAHO, MTO OAHOTO TÜJIBKO 030Hnp0BaHnji neflocTa­TOMHO AJ1ÍI CIHDKCHHX C0flep>KailH>l Í(OC, XOTJI TaKHM NYTEM MHOTHG. MiiKpo3arp>i3H5iioinHe COEAHHEHIW pa3­pyuiaioTOi, JIHGO npeBpamaioToi B MEHEE onacHbie HJIH ÖHOJrorHHGCKH jtei ME pa3JiaraeMbie. C Apyroü CTOponi.I npeKy3opi,I no;; AEIICRBNEM osoHa MoryT npeBpaTHTboi II B TpuraJlOMCTaHbl. 3(J)(J)eKTHBH0CTb nopOUIKa H3 aKTHB­Horo yrjiji raK>i(e orpamiMena - BO BCAKOM cAywae npn SKOHOMimecKH oripaBAaHHbix A03AX no 50r/M3-HO MO>KHO ycneuiHo KOMŐHHHpoBaTb c KoaryjijiitHOHHbiM (])HAbrpo­BaHHCM. B HacTo>iiuee BpeMji omiiMajibHbiM cmiTaeTOi nocjieAOBaTejibHoe npiiMeHeHiie o3onupoeanuH u (fiuAbm­poeanuíi epanyAiipoGCmbiM OKinuenbiM yiAeM. 0>KHflae­MaM 3(|)(j)ei<THBH0CTb raKoro MCTo^a cocTaBJifleT 50% CHH>KCHH>I coAep>Kaniiíi no ÍIOC. ECJIH NPNXOAHTCH aejiarb Bbiöop Me>Kfly 030Hnp(nja­iineM H npHMCHeHHeM aimiBHoro YR^íi, TO aBTopbi pe­KOMeHAywT OCTAHABJIHBATBCJI HA NOCJIEAHEM. ECJIH npea­MeTOM Bbifiopa cranyT nopoiiioK aKTHBHoro yrjiji HJIH RPAHYJIAT ero, TO PEKOMEHAYETCJI BbionpaTb KOJIOHKH c rpanyjiaTOM. floöaBJieHHC riopouiKa aKTHBnoro yrjiji MoweT 0Ka3arbc>i xopouteft AoiHuiHHTeJibHOH Mepoií npn aBapuHx hah npw 3HaMHTeAbHi>ix KOAenaHHHX coAep>i<a­HHÍI 3ARPA3HIRREAEH, HO RJIABHWM 0űpa:i0M KAK AONOA­H6HIIE K ([lIIAbTpaM. MCCAEAOBAAHCB Bonpocbl 3aTpaT H SltlljieKTUBHOCTb Mep AATIHOII CTOHMOCTH. 1'aKoe HCCACAOBAMIE T3K>KC noAT­Bep>KAaeT KOMönnnpoBaiiHoe npiiMeHcmie 030Hiip0Ba­HHJI H (JiHAbTpoBaiiHji na AKTHBHOM yrAe. Tlio efficiency of water treatment processes in removing organic trace pollutants by Benedek, I'. Cand. Techn. Sci. and Bulkai L. The surface- and occasionally bank filtered waters used as sources of drinking water contain a number of organic compounds, as illustrated by the eompilation in Table 2. Of the totál organic content measured as DOC, the trace pollutants represent a fraction only, but the majority thereof is composed of humic and/or fulvic acids, which when chlorinated turn into t rihalometha­nes, thus dangerous micropollutants. Those large-ino­lecule organic substances (precursors) are in part (40 to 60%) reinoved by sediinentation-clarification. The problems related to the precursors underline again the iinportance of high-efficiency clarification-sand filt­ration. The suspended matter may incorporate large amounts of organic micropollutants, such as aromatic hydrocarbons, pesticides, organic chlorine compounds (PCB), etc. The concentration of these lat ter is thus alsó reduced by clarification-filtration. The expected reduc­tion in DOC is about, 00%. The jiotential reduction of dissolved organic micro­pollutants has been investigated by bank filtration, groundwater recharging and slow filtration. The effec­tiveness of these methods was found to depend on a wide variety of factors, the mechanisin involved beung primarily a biological one. Unfortunately, even the cpiality of bank filtered waters is liable to deteriorate in the future. Therefore, investigations have been exten­ded to the details of the advanced treatment methods such as adsorption and oxidation. Reviewing the expe­riences gained both abroad and in Hungary, several conclusions have been compiled in Chapter 4. As will be perceived thereform, ozone treatment alone is inef­fective, when measured in terms of the decomposing a rangé of organic micropollutants, rendering them thus either less hazardous, or more susceptible to bidegration. It should be noted at the saine time, that ozone is alsó liabje to transform the precursors into trihalomethanes. The effectiveness of activated powdered carbon is alsó limited, at least at the economically acceptable feed rate of up to 50 g/m 3, but it is readily combined with coagu­lation-filtration. The use of ozone and granulated acti­vated carbon treatment in suceession represents for the time being the optimál solútion for the removal of trace pollutants (with an expected efficiency of round 50% in terms of DOC reduction).

Next

/
Thumbnails
Contents