Hidrológiai Közlöny 1980 (60. évfolyam)

11. szám - Müller Germann–Wagner Frank: A Balaton karbonát üledékeinek kifejlődése, a klimatikus és az emberi hatások tükröződése

518 Hidrológiai Közlöny 1980. 11. sz. Müller G.— Wagner F.: A Balaton üledékeinek kifejlődése helyességét teszi kérdésessé, hanem csupán azt mu­tatja, hogy a vegetáció a rövid idő alatt lejátszódó klímaváltozásokat csak lassan követi és a vízké­miai, vagy a karbonátok fejlődéséhez viszonyítva kevésbé érzékeny. IRODALOM [1] Bemer, R. A. (1971): Principles of Chemical Sedi­mentology — McGraw-Hill, New York. [2] Bidló G. (1960): Balatoni aragonit-kiválás — Földt. Közi. 90. pp. 224—225. Budapest. [3] Blohm, M. (1974): Sedimentpetrographische Unter­suchungen am Neusiedler See, österreich — Inaug. Diss. Univ. Heidelberg. [4] Entz, H.—Sebestyén, Ö (1964): Das Leben des Ba­latonsees — Magyar Biol. Kut. Műnk. 16. pp. 179— 411. Budapest. [5] Entz, B. (1959): Chemische Charakterisierung der Gewásser in der Umgobung des Balatonsees (Plat­tensee) und eheniische Verhaltnisse der Balaton­wassers — Annál. Biol. 26. pp. 131—201. Tihany. [6] Felföldy, L.—Muszkalay, L.—Rákóczi, L.—Szesz­tay, K. (1960): Origin and movement of sediment in Laké Balaton — Mitt. int. Verein. Limnol. 17. pp. 282—291. [7] Füchtbauer, H.—Hardie, L. A. (1976): Experiinen­tally determined homogeneous distribution coef­ficients for precipitated magnesian ealcites: Appli­cation to marine earbonate cements -— Abs. Prog. geol. Soc. Am. Meetings. 8. p. 877. [8] Gaines, A. M. (1977): Protodolomite redefined — J. sedim. Petrol. 47. pp. 543—546. |91 Keresmaros J. (1939): A keszthelyi halomgerinc balatoni szinlő — Földr. Közlem. 67. Budapest. [10]Kinsman, D. J. J. (1969): Interpretation of Sr concentrations in earbonate minerals and roeks — J. sedim,. Petrol. 39. pp. 486—508. [11] Kitano, Y.—Okomura, M.—Idogaki, M. (1975): Incorporation of sodium, ehloride and sulphate with calcium earbonate — Geocliem. J. 9. pp. 75— 84. [12] Linz, E. (1976): Zur Geochoinie stabiler C- und O. Isotope in nichtmarinen Karbonaten und Kar­bonatgesteinen — Inaug. Diss. Univ. Heidelberg. [13] Müller, G.-—Billings, G. K. (1965): Beziehungen zwischen dem Natrium-Gehalt biogener Karbonate und der Salinitat im Bildungsraum -— Jaliresvers. 55. p. 11. Strasbourg. [14] Müller, G. (1969): Sedimentbildung im Plattensee, Ungarn — Naturwissenschaften. 56. pp. 606—615. [15] Müller,IG. (1970): High-magnesian calcite and pro­todolomite in Laké Balaton (Hungary) sediments — Nature. 226. pp. 749—750. [16] Müller, G. (1971): Aragonite inorganic precipita­tion in a freshwater laké — Nature. 229. p. 18. [17] Müller, G.—Irion, G.—Förstner, U. (1972): For­mation and diagenesis of inorganic Ca-Mg-carbo­nates in the lacustrine environment — Natur­wissenschaften. 59. pp. 158—164. [18] Pásztó P. (1963): A Balaton vízminőségének vizs­gálata — VTTUKI. 11. pp. 1—125. Budapest. [19] Ponyi, J. E.—Tusnádi, G.—Vanger, E.—Rich­novszky, A. (1974): Investigation with computer ICL system 4 on the morphometry and composition of the population of Dreissena shells from the upper sediment layer of Laké Balaton — Annál. Biol. 41. pp. 217—234. Tihanv. [20] Rónai, A. (1969): The'geology of Laké Balaton and surroundings — Mitt. int. Verein. Limnol. 17. pp. 275 281 [21] Rothe, P.—Hoers, J.—Sonne, V. (1974): The iso­topic composition of Tertiary carbonates from the Mainz Basin: an example of isotopic fractionations in 'closed basins' — Sedimentology. 21. pp. 373— 395. [22] Schroll, E.—Wieden, P. (1971): Eine rezente Bil­dung von Dolomit im Schlamni des Neusiedlersees — Tscherm. miner. petrogr. Mitt. 7. pp. 286—289. [23] Sebestyén O.—Entz B.—Felföldy L. (1951): Ala­csony vízállással kapcsolatos biológiai jelenségek­ről a Balatonon 1949 őszén [24] Sebestyén, 0. (1962): Ergebnisse der Balaton­Forscliung der letzten fünfzehn Jahre 1946—60 — Annál. Biol. 29. pp. 217—266. Tihany. [25] Stoffers, P. (1975): Die Rekonstruktion palaokli­matischer Verhaltnisse am Beispiel ostafrikani­scher Seen — Ruperto Oarola. 55. pp. pp. 81—86. Heidelb QV CJ [26] Stoffers, P.—Hecky, R. E. (1978): Late Pleistocene­Holoeene evolution of the Kivu-Tanganyika Basin. In: Modern and Ancient Laké Sediments (Ed. by A. Matter and M. E. Tuckor) — Spec. Publs. int. Ass. Sediment. 2. pp. 43—55. [27] Szesztay, K. (1967): Somé hydrologic data of Laké Balaton. In: Study Tours, int. Symp. Paleolimnol. — Biol. Res. Inst. Hung. Acad. Sci. pp. 26—28. Tihany. [28] Tamás, G. (1972): Horizontal phytoplanktonstudies in Laké Balaton based on scooped samples and filtrates taken in 1967 — Annál. Biol. 39. pp. 151 — 188. Tihany. [29] Tóth, L. (1967): Higher water plants. In: Study Tours, int. Symp. Paleolimnol. — Biol. Res. Inst. Hung. Acad. Sci. pp. 40—41. Tihany. [30] White, A. F. (1977): Sodium and potassium cop­recipitation in aragonite — Geochim. Gosmochim. Acta. 41. pp. 613—625. [31] Winland, H. D. (1969): Stability of calcium earbo­nate polymorphs in warm, shallow seawater — J. sedim. Petrol. 39. pp. 1579—1587. [32] Zolyomi, B. (1953): Die Entwieklungsgeschiechte der Vegatation Ungarns seit dem letzten Inter­glazial — Acta Biol. Hung. IV. pp. 367—413. Holocene earbonate evolution in Laké Balaton (Hungary): a response to climate and impact of Man Müller, G.—Wagner, F. Minerology, geochemistry and oxygen isotope com­position of Laké Balaton earbonate sediments reflect fluctuations in the composition of the laké water, which were strongly influenced by climate and Man during the past 8000 vears. During the „Pre-Roman" Era (about 7500—2000 y. B. P.), when the laké had no out­flow (closed basin), calcite with low Mg, Sr and Na concentrations was precipitated at high water levels during periods with relatively low rates of evaporation. High magnesium calcite with up to 20 mol per cent MgCO s and elevated Sr and Na concentrations and pro­todolomite förmed at low water levels during periods of high evaporation from solutions with higher Mg/Ca and Mg+Ca/Sr ratios and elevated Na concentratioii. These conclusions are alsó strongly supported by oxygen isotope data of the autoehthonus carbonates. Lithium, associated with clay minerals correlates positively with Mg, Sr and Na. In addition to the verticál fluctuations in earbonate composition within each core, pronunced lateral chan­ges are found between the difíerent cores: From core A (closest to the main inflow, the Zala River) to core F (farthest distance from the Zala River) the concent­rations of Mg, Sr and Na incorporated in carbonates increase more or less steadily. The interstitial waters in the cores show a similar trend: The Mg/Ca ratios and the Na concentrations increase generally from core A to core F. Within each core the highest Mg/Ca ratios were found to occur in the lower half of the core where they are still close to the zone where the highest Mg concentrations of earbonate minerals are found. Two periods with evaporation maxima can be traced along the long axis of the laké: one towards the end of the Atlanticum (about 5000 y. B. P.), another towards the end of the Subboreal (about 3000 y. B. P.). After an artificial outflow was built by the Romans about 2000 y. B. P., the laké changed from a closed to an open basin with only rninor fluctuations in water level and hvdrochemistry. Since then, high magnesium calcite with a more or less constant rate of MgCO s, Sr and Na incorporation has been precipitating during periods of algal blooms.

Next

/
Thumbnails
Contents