Hidrológiai Közlöny 1952 (32. évfolyam)

7-8. szám - Szesztay Károly: Sokéves tározótérszükséglet meghatározása Krickij Sz. N. és Menkel M. F. statisztikai módszerével

262 _ Szesztay K.: Tározótérszükséfflet statisztikai meghatározása hatóságát kifejező p érték és keressük a tározó­tér szükségletet meghatározó yS tényezőt. A vízhozam gyakoriság összegező görbe se­gítségével közvetlenül megállapíthatjuk az adott /j%-nak megfelelő A-J, 1' vízhozamszorzót. 4 A jelölések értelmezéséből nyilvánvalóan következik, hogy a z vízhiányt mindig a z = a. — fe (4) különbség adja meg. Ha k™ > a vízhiány ninos, vagyis a meg­adott biztonság (p%, illetőleg N év, ismét­lődési időszak) mellett nem várható olyan esz­tendő, amelynek közepes vízhozama a fogyasz­tás vízhozamánál kisebb legyen. Természetesen az a körülmény még nem jelenti azt, hogy a vízszükséglet tározás nélkül biztosítható, mert a rendelkezésre álló Q vízhozam éven belüli inga­dozásai szükségessé tehetik az „éves tározás" lé­tesítését. 5 A (4) képlet szerint megállapított aW "r a-k™ vízhiány még nem lehet mértékadó a sokévi tá­rozótérfogat szükséglet szempontjából, mert két, vagy több egymásutáni száraz év vízhiányának halmozódásából nagyobb térfogatszükséglet is adódhat. Krickij és Mertkel első módszerükben a vízhiányok ilyen halmozódásának lehetőségét úgy vették figyelembe, hogy az egyes évek fe,, k 2,k 3, fe, vízhozam szorzóinak ismereté­ben előállították az k'f = k<v = ; fc? fej -(- k 2 2 k® 4 .. .n egymásutáni évekből álló évcsoporiok átlagos vízhozamszorzói alapján adódó gyakori­ság összegező görbe p%-hoz tartozó ordinátái „csoportos vízhozam szorzók" meghatározása után kiszámítjuk a (6-a) (6—b) z<2) = (a — (a —fe< 2>). 2 zP)=(a — fej?)). 3 4") = (a — &W) . n (6—n) vízhiányokat és a sokévi tározóiéi-szükséglet szá­mításához nyilvánvalóan a fenti adatsor fi, = max z<"> = max [(a — feW) . n] (7) szélső értéke lesz mértékadó. Az (5-a) (5-b) .. (5-n) képletek sízerinti át­lagszámításra és az egyes adatsorok C(, n ) és Cí n) tényezőjének a (2) és (3) képletek szerinti rendkívüli hosszadalmas számítási munkájára nincs szükség, mert az eljárás gyakorlati alkal­mazása során Krickij és Menkel (elméleti meg­gondolások és számos ellenőrző számítás alap­ján) igen egyszerű képleteket vezettek be az év­csoportok átlagos adataiból álló sor Ci n ) és Cl"' paramétereinek számítására: C„ - — C, (g ) Cí"> yir Cí»> = Amint a számpéldáikból látni fogjuk a (8> képlet alkalmazásával a sokévi tározótérfogat lé­"1" "3 fe (2 ), , . . . tí s—i fe,._ i -f fe, K + h + m 2 = fe.—2 + fe,-1 + fe, (5-a) (5-b) fe<"> = ki+ k2 + • • • + _ fe („) fe 2 + fe 3 + • • ' + 1 . /.(n)^ = fe—, + • . • + fe , (f,_ n) n n n átlagos vízhozamszorzókat is, amelyek tehát a 2, 3 .. .n egymásutáni évből álló évcsoportok összegezett vízjárását jellemzik. A fe (2 ), fe ( 2 2 ).... kí% vízhozam szorzóikból álló adatsor C£ 2 ) és C< 2 ) tényezőjét kiszámítva a szomszédos évpárok gyakoriság összegező gör­béjéről (a Foster—Ribkin tábláizatbóll) kiolvas­hatjuk a megkívánt p biztonságnak megfelelő kft értékét. Hasonló módon meghatározhatjuk fe< 3 ), k^ feW értékeket is, amelyek tehát a 3, 4 A fe,/ 1) jelölésnél a felső ( J) index azt jelenti, hogy min­den évet »egyedül állóan« vizsgálunk, tehát az egymásutáni száraz évek vízhiányának halmozódását még nem vettük fi­gyelembe. 5 Minthogy a sokévi tározás nem valósítható meg az »éves tározásx térfogatszükségletének megállapítása nélkül, az ismertetés későbbi részében röviden tárgyaljuk majd az éven belüli vízhozamingadozásoknak a fogyasztáshoz való alakításához szükséges tározótérfogat statisztikai módszer­rel való meghatározását is. nyező kikeresése egyszerű táblázatos számí­tással, gyorsan elvégezhető. Azt a körülményt, hogy az egy csoportban vizsgált évek számának (n) növelésével a z = f (n) függvény maximumot ér el azzal ma­gyarázhatjuk. hogy az évcsoport tágításával nö­vekszik a valószínűsége annak, hogy a száraz évek mellett már nedves évek is kerülnek a vizs­gált évcsoportbba. A maximális z értéket adó évcsoport nagy­sága ugyanazon keresztszelvényben az a ki­használási és p biztonsági tényező értéke szerint változik (lásd 6. ábra z = f(n) görbéit) A mértékadó z érték (/?,) megállapítása után a sokévi tározáshoz szükséges térfogat megha­tározásakor a ~ V,' — 31,54 .16®. p s.Q 0 (9) értékből kell kiindulnunk, amelyet a ( lJ) képlet- #

Next

/
Thumbnails
Contents