Fogorvosi szemle, 2017 (110. évfolyam, 1-4. szám)

2017-03-01 / 1. szám

24 FOGORVOSI SZEMLE ■ 110. évf. 1. sz. 2017. pék korrózió jeleit mutatták. A 21 napos periódus alatt a táptalajt nem cseréltük, így baktérium utánpótlást nem kaptak a minták. Kutatócsoportunk további vizsgálatokat szeretne vé­gezni a baktériumok utánpótlásának megvizsgálásá­val. Emellett más, a fogágy betegségért felelős baktéri­umok szaporodását is vizsgálnánk a kezelt titán felszí­neken. Köszönetnyilvánítás Szerzők szeretnék megköszönni Dr. Mihalik Erzsébet (SZTE TTIK) segítségét a SEM-képek elkészítésében, valamint Dr. Braunitzer Gábor (SZTE-FOK) segítségét az adatok statisztikai feldolgozásában. Irodalom 1. Boere G: Influence of fluoride on titanium in an acidic environment measured by polarization resistance technique. J. Appl. Biomater. 1995; 6: 283-288. 2. Bollen CML, Papaioannou W, Van Eldere, J, et al.: The influence of abutment surface roughness on plaque accumulation and peri­­implant mucositis. Clin. Oral Implants Res. 1996; 7: 201 -211. 3. Cimasoni G: 1972. The inhibition of enolase by fluoride in vitro, Car­ies Res. 6: 93-102. 4. Hamada S, Slade HD: Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol. Rev. 1980; 44: 331-384. 5. Hamilton IR: 1977. Effects of fluoride on enzymatic regulation of bacterial carbohydrate metabolism. In cariostatic mechanisms of fluorides. Caries Res. 11 (Suppl. 1): 321-327. 6. Huang H: Effects of fluoride concentration and elastic tensile strain on the corrosion resistance of commercially pure titanium. Bioma­terials 2002; 23: 59-63. 7. Könönen MHO, Lavonius ET, Kivilahti JK: SEM observations on stress corrosion cracking of commercially pure titanium in a topi­cal fluoride solution. Dent. Mater. 1995; 11: 269-272. 8. Lautenschlager EP, Monaghan P: Titanium and titanium alloys as dental materials. Int. Dental J. 1993; 43: 245-253. 9. Loesche WJ: Role of Streptococcus mutans in human dental de­cay. Microbiol. Rev. 1986; 50: 353-380. 10. Mändl S, Gerlach JW, Rauscenbach B: Surface modification of NiTi for orthopaedic braces by plasma immersion ion implanta­tion. Surf Coat Technoi. 2005; 196: 293-297. 11. Nakagawa M, Matsuya S, Shiraishi T et al.: Effect of fluoride con­centration and pH on corrosion behavior of titanium for dental use. J. Dent. Res. 1999; 78: 1568-1572. 12. Parr GR, Gardner LK, Toth RW: Titanium: The mystery metal of implant dentistry. Dental materials aspects. J. Prosthet. Dent. 1985; 54: 410-414. 13. Park JB, Kim YK: Metallic Biomaterials. In: Bronzino JD ed. The Biomedical Engineering Handbook. 2nd ed. CRC Press and IEEE Press, vol. 1. Boca Raton 2000: 37-5-37-20. 14. Quirynen N M, Bollen CM: The influence of surface roughness and surface-free energy on supra- and subgingival plaque forma­tion in man. A review of the literature. J Clin Periodontol 1995; 22: 1-14. 15. Rasperini G, Maglione M, Cocconcelli P et al.: In vivo early plaque formation on pure titanium and ceramic abutments: A compara­tive microbiological and SEM analysis. Clin. Oral Implants Res. 1998; 9: 357-364. 16. Reclaru L, Meyer JM: Effects of fluorides on titanium and other dental alloys in dentistry. Biomaterials 1998; 19: 85-92. 17. Schiff N, Grosgogeat B, Lissac M et al.: Influence of fluoride con­tent and pH on the corrosion resistance of titanium and its alloys. Biomaterials 2002; 23: 1995-2002. 18. Stájer A, Ungvári K, Pelsôczi Kl et al.: Corrosive effects of fluo­ride on titanium: Investigation by X-ray photoelectron spectros­copy, atomic force microscopy, and human epithelial cell cultur­ing. J Biomed Mater Res A. 2008; 87: 450-458. 19. Stájer A, Urbán E, Pelsôczi Kl et al.: Effect of caries preventive products on the growth of bacterial biofilm on titanium surface. Acta Microbiol Immunol Hung. 2012; 59: 51-61. 20. Strietzel R, Hôsch A, Kalbfleish H et al.: In vitro corrosion of ti­tanium. Biomaterials 1998; 19: 1495-1499. 21. Toumelin-Chemla F, Rouelle F, Burdairon G: Corrosive properties of fluoride-containinq odontologie qels aqainst titanium. J. Dent. 1996; 24: 109-115. 22. Vogel G: Biological aspects of a soft tissue seal. Berlin: Quintes­sence Publishing Co. 1999: 142-152. Barrak IÁ, Urban E, Turzó K, Stájer A Comparison of effects of different fluoride containing prophylactics on the growth of Streptococcus mutans on titanium surfaces - an in vitro study The combined use of high fluoride (F‘) concentration and acidic pH can weaken the corrosion resistance of titanium (Ti). Caries prophylactic products contain high amounts of F and are applied at a low pH. The aim of our study was to deter­mine whether the different forms of applied flouride has different effects on the growth of Streptococcus mutans on dif­ferent titanium surfaces. Titanium with polished surface were treated with a gel (pH: 4,8) containing 1,25% olaflur, a rinse (pH: 4,4) containing 0,025% olaflur or a 1% aqueous solution of NaF at a pH of 4,5. Control discs were not treated. All discs were incubated with S. mutans for 21 days. To assess the amount of S. mutans protein assay analysis was performed at 5, 10 and 21 days. Scanning electron microscopic (SEM) investigations were also executed. By the 21st day significant differences could be observed in the bacterial protein quantity. The between group- com­parisons showed that the rinse and gel were superior to NaF or control group (p < 0,01 and p < 0,05). Furthermore signs of corrosion could be observed in the group of gel treated discs. The results suggest that amine-fluoride content mouthwashes might be a suitable choice for prevention to the patients with dental implants. Key words: titanium, scanning electron microscopy, dental implants, corrosion, Streptococcus mutans, flouride

Next

/
Thumbnails
Contents