Fogorvosi szemle, 2017 (110. évfolyam, 1-4. szám)
2017-03-01 / 1. szám
14 - FOGORVOSI SZEMLE tenyésztése és jellemzése. Fogorvosi Szemle 2009; 102: 175- 181. 17. Kálló K, Gánti B, Kerémi B, Stiedl P, Nagy Á, Varga G és mtsai: Patkány fogbél eredetű őssejtek tenyésztése és differenciáltatása szövetépítési kutatások megalapozására. Fogorvosi Szemle 2014; 107: 43-49. 18. Király M, Kadar K, Horvathy DB, Nardai P, Racz GZ, Lacza Z és mtsai: Integration of neuronally predifferentiated human dental pulp stem cells into rat brain in vivo. Neurochemistry international 2011; 59: 371-381. 19. Király M, Porcsalmy B, Pataki A, Kadar K, Jelitai M, Molnár B és mtsai: Simultaneous pkc and camp activation induces differentiation of human dental pulp stem cells into functionally active neurons. Neurochemistry international 2009; 55: 323-332. 20. Kuehnle I, Goodell MA: The therapeutic potential of stem cells from adults, Smy 2002; 325: 372-376. 21. Le Blanc K, Pittenger M: Mesenchymal stem cells: Progress toward promise. Cytotherapy 2005; 7: 36-45. 22. Lu J, Dai J, Wang X, Zhang M, Zhang P, Sun H és mtsai: Effect of fibroblast growth factor 9 on the osteogenic differentiation of bone marrow stromal stem cells and dental pulp stem cells. Molecular medicine reports 2015; 11: 1661-1668. 23. Molnár B, Kadar K, Király M, Porcsalmy B, Somogyi E, Hermann P és mtsai: Emberi foggyökérhártya eredetű őssejtek izolálása, ■ 110. évf. 1.SZ. 2017. tenyésztése és jellemzése. Fogorvosi Szemle 2008; 101: 155- 161. 24. Mórád G, Kheiri L, Khojasteh A: Dental pulp stem cells for in vivo bone regeneration: A systematic review of literature. Archives of oral biology 2013; 58: 1818-1827. 25. Pons C, Panayotov I, Renaud M, Collart Dutilleul P, Yachouh J, Cuisinier F: Osseo-integration potential of dental pulp stem cells spray-deposed on poly-ether-ether-ketone surface for facial reconstruction. Clinical Oral Implants Research 2014; 25: 510. 26. Prockop DJ: Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997; 276: 71-74. 27. Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J és mtsai: Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 2004; 364: 149-155. 28. Varga G, Bori E, Kalló K, Nagy K, Tarjan I, Racz GZ: Novel possible pharmaceutical research tools: Stem cells, gene delivery and their combination. Current pharmaceutical design 2013; 19: 133-141. 29. Vemuri MC, Chase LG, Rao MS: Mesenchymal stem cell assays and applications. Methods in molecular biology 2011 ; 698: 3-8. 30. Xiaohua Y, Zhenjiang Y, Weidong L, Pengcheng X, Sídong C: The non-linear threshold association between aspirin use and esophageal adenocarcinoma: Results of a dose-response meta-analysis. Pharmacoepidemiology and drug safety 2014; 23: 278-284. Perczel-Kovách KE, Farkasdi S, Kalló K, Hegedűs O, Kerémi B, Cuisinier F, Blazsek J, Varga G Effect of stem cells of dental pulp origin on osseointegration of titanium implant in a novel rat vertebra model During that last decade a large number of experiments showed the successful application of stem cells in achieving large bone volume regeneration. On the contrary, our knowledge about the promotion of implant osseointegration by stem cell is sporadic. Recently, our research group has carried out an array of studies aiming the characterization of postnatal stem cells of dental origin. In addition, we have developed a novel quantitative model for implant osseointegration in rat tail vertebrae. In the present work we aimed to study how the implant osseointegration process is affected by mesenchymal stem cells of rat dental pulp origin (DPSC) when cells are undifferentiated or predifferentiated into osteogenic direction. Our results show that undifferentiated pulp cells inserted between the implant and the bone slow down the osseointegration process. On the other hand, pre-differentiated DPSCs do not have a similar adverse effect any more. Our data suggest that the success of mesenchymal stem cell application to promote implant osseointegration is highly dependent on the applied conditions, particularly on the parallel application of scaffolds and osteogenic components. Key words: rat, pulp, stem cell, implant, tail vertebra, osseointegration, differentiation, culture, tissue engineering