Az Egri Ho Si Minh Tanárképző Főiskola Tud. Közleményei. 1987. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 18/11)

Cservenyák János: Egy középiskolai geometriai kísérlet összefogla-lása I. és Az egybevágósági transzformációk. A vektorok.

- 100 ­vizsgálata érdekében a következő állítást igazoltuk. A tengelyes tükrözé­seknek létezik olyan véges sorozata, amely egy adott "a" egyenes által meghatározott és előre kijelölt a 4 félsíkot és az "a"-ra illeszkedő adott A kezdőpontú adott a í félegyenest, az adott "b" egyenes által megbatározott és előre kijelölt ß x félsíkba, és a "b"-re illeszkedő adott B kezdőpontú adott b í félegyenesbe visz át. A bizonyítás során kiderült, hogy ehhez legfeljebb három tengelyre történő tükrözés egymásutánjára van szükség. Az első tengely az AB szakasz felezőmerőlegese, a második az a* és szögfelezője (ahol a* az a t első tengelyre vonatkozó tü­körképe), a harmadik pedig a b egyenes, ha egyáltalán ezekre esetenként szükség van. A tengelyes tükrözések olyan véges sorozatát, amely adott félsíkot, és a félsíkot meghatározó egyenes adott kezdőpontú adott féle­gyenesét ugyanilyen előre megadott alakzatba viszi át egybevágósági transzformációna k neveztük. Ennek alapján, ha a tükrözések véges sorozata egy tengelyre vonatkozó tükrözéssel helyettesíthető, akkor tengelyes tük­rözés , ha két tengelyre vonatkozó tükrözéssel helyettesíthető, akkor for­gás, pontra vonatkozó tükrözé s vagy eltolás , ha három tengelyre vonatkozó tükrözéssel heyettesíthető, akkor csúsztatva tükrözé s az egybevágósági transzformáció. (Ez utóbbi azért kapta ezt az elnevezést, mert három ten­gelyre vonatkozó tükrözés összetétele egy eltolás és egy tengelyes tükrö­zés iösszetételével', helyettesíthető.) Két geometriai alakzatot pedig akkor neveztünk egybevágónak, ha létezik olyan egybevágósági transzformáció, amely egyiket a másikba viszi. Bebizonyítottuk a háromszögek egybevágóságára vonatkozó tételeket, vagyis adott feltételek mellett megmutattuk, hogy létezik olyan egybevágósági

Next

/
Thumbnails
Contents