Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 1994. Sectio Mathematicae. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 22)
J. P. JONES és Kiss P.: Teljes hatványok lineáris rekurzív sorozatokban
Teljes hatványok lineáris rekurzív sorozatokban 59 Irodalom [1] BAKER, A., A sharpening of the bounds for linear forms in logarithms II, Acta Arithm., 24 (1973), 33-36. [2] COHN, J. H. E., On square Fibonacci numbers, J. London Math. Soc., 39 (1964), 537-540. [3] J. H. E. COHN, Squares in some recurrent sequences, Pacific J. Math., 41 (1972), 631-646. [4] J. H. E. COHN, Eight Diophantine équations, Proc. London Math. Soc ., 16 (1966), 153-166. [5] J. H. E. COHN, Five Diophatine équations, Math. Scand., 21 (1967), 61-70. [6] P. KlSS, Différences of the terms of linear récurrences, Studia Sei. Math. Hungar. , 20 (1985), 285-293. [7] J. C. LAGARIAS and D. P. WEISSER, Fibonacci and Lucas cubes, Fibonacci Quart., 18 (1981), 39-43. [8] W. LJUNGGREN, Zur Theorie der Gleichung x 2 + 1 = Dy 4, Avh. Norske Vid Akad. Oslo., 5 (1942). [9] J. LONDON and R. FINKELSTEIN, On Fibonacci and Lucas numbers which are perfect powers, Fibonacci Quart., 7 (1969) 476-481, 487, errata ibid 8 (1970) 248. [10] J. LONDON and R. FINKELSTEIN, On Mordell's équation y 2 - k = x 3 , Bowling Green University Press., 1973. [11] W. L. MCDANIEL and P. RLBENBOIM, Squares and double-square s in Lucas sequences, C.R. Math. Acad. Sei. Soc. R. Canada., 14 (1992), 104-108. [12] A. PETHÖ, Füll cubes in the Fibonacci sequence, Publ. Math. Debrecen., 30 (1983), 117-127. [13] A. PETHŐ, The Pell sequence contains only trivial perfect powers, Coll. Math. Soc. J. Bolyai, 60 sets, Graphs and Numbers, Budapest., (1991), 561-568. [14] A. PETHÖ, Perfect powers in second order linear récurrences, J. Number Theory., 15 (1982), 5-13. [15] A. PETHŐ, Perfect powers in second order récurrences, Topics in Classical Number Theory, Akadémiai Kiadó, Budapest., (1981), 1217-1227.