Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 1994. Sectio Mathematicae. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 22)

J. P. JONES és Kiss P.: Teljes hatványok lineáris rekurzív sorozatokban

60 James P. Jones és Kiss Péter [16] P. RlBENBOIM, Square classes of Fibonacci and Lucas numbers, Por­tugáliáé Math., 46 (1989), 159-175. [17] P. RlBENBOIM and W.L. MCDANIEL, Square classes of Fibonacci and Lucas sequences, Portugáliáé Math., 48 (1991), 469-473. [18] P. RlBENBOIM, Square classes of (a n - 1 )/(a - 1) and a n + 1, Sichuan Daxue Xunebar., 26 (1989), 196-199. [19] N. ROBBINS, On Fibonacci numbers of the form px 2, where p is prime, Fibonacci Quart., 21 (1983), 266-271. [20] N. ROBBINS, On Pell numbers of the form PX 2, where P is prime, Fibonacci Quart., 22 (1984), 340-348. [21] T. N. SHOREY and C. L. STEWART, On the Diophantine équation ax 2 t + bx ty -f cy 2 = d and pure powers in récurrence sequences, Math. Scand., 52 (1983), 24-36. [22] T. N. SHOREY and C. L. STEWART, Pure powers in récurrence se­quences and some related Diophatine équations, J. Number Tlieory., 27 (1987), 324-352. [23] 0. WYLIE, In the Fibonacci sériés F X = 1,F 2 - 1,JF»+I = F N + F N_I the first, second and twelvth terms are squares, Amer. Math. Monthly, 71 (1964), 220-222.

Next

/
Thumbnails
Contents