Vízügyi Közlemények, 1984 (66. évfolyam)
2. füzet - Rövidebb tanulmányok, közlemények, beszámolók
A diszkrét lineáris kaszkád-modell paramétereinek numerikus érzékenység- és stabilitásvizsgálata 343 Численный анализ чувствительности и устойчивости параметров дискретной каскадной линейной модели ИРИТЦ Ласло-ШУХОБОДСКИЙ Александр Б,д-р СЁЛЁШИ-ХАДЬ Андраш Идентификация параметров является одним из самых критических моментов создания гидрологических прогностических моделей. Это обусловлено двумя факторами: - различные критерии точности (целевые функции могут привести к различным векторам параметров и - временная изменчивость параметров требует совместной оценки переменных состояния и параметров модели, что приводит к нелинейной проблеме. Целью настоящей работы являлось исследование устойчивости параметров и чувствительности дискретной линейной каскадной модели (ДЛКМ) к различным критериям точности. ДЛКМ (Сёлёши-Надь, 1983) составляет детерминистическую часть структурностохастической модели в реальном врецени, которая используется в оперативной практике. (Барша-Сёлёши-Надь-Харкани, 1983). ДЛКМ представляет собой систему уравнений (1) - (5) и является адекватным дискретным представлением неразрывного каскада Калинина-Милюкова -Неша и имеет два параметра: n - число характерных участков (линейных резурвуаров) и k - время добегания (коэффициент зарегулированности одного из участков (резервуаров). Выражения (6) - (11) служили критериями точности, принятыми при расчетах. Чусленные эксперименты показали, что независимо от применяемого критерия точности значения оптимизируемых параметров практически не меняются, что указывает на работоспособность. ДЛКМ. Кроме того, оказалось, что ошибки быстрее растут в зависимости от изменения п, чем от изменения k (рис. 1). В связи стем, что параметры являются устойчивыми, модель может быть применена при оперативном управлении в режиме реального времени. * * * Numerical parameter sensitivity and stability analysis of the discrate linear cascade model L. IMTZ, A. B. SUKHOBODSKY and Dr. A. SZÖLLŐSI-NAGY On of the most critical phases in building up an operational hydrological forecasting model is the identification of its parameters. This stems from two factors, i. e. - Different performance criteria/objective functions might lead to different parameter vectors, and -Time variability of parameters requires the joint estimation of state variables and model parameters resulting thus in a non-linear estimation problem. The objective of the paper is to perform the sensitivity analysis of the Discrate Linear Cascade Model (DLCM) with respect to different performance criteria and to investigate the stability of parameters. DLCM ( Szöllösi-Nagy , 1983) constitutes the deterministic part of an operationally used real-time structural-stochastic river flow model (Bartha-Szöllösi-Nagy-Harkányi, 1983). DLCM is the adequate discrete representation of the continuous Kalinin-Milyukov-Nash cascade. The state space representation of DLCM is given by Eqs. ( 1 )—(5). The model has two parameters: the number of characteristic reaches (linear reservoirs n. and the travel time) storage coefficient of one reach/reservoir, K. Performance measures (6)-{ll) were used in the analysis. Finite sensitivity analyses were carried out through numerical simulation. Irrespective of the performance measure used, the optimized parameter values were practically identical in each case indicating therefore the robustness of