Vízügyi Közlemények, 1975 (57. évfolyam)

3. füzet - Dégen Imre: Költség-haszon elemzés matematikai módszerei a vízgazdálkodásban

330 Déaen Imre Используя функциональную связь, выражающую взаимоотношения между количеством изъятой воды, как продуктом , с одной стороны, и затратами рабочей силы, энергии, про­межуточным накоплением воды, производственными мощностями, сетью обслуживания как факторами производства , с другой стороны, и применяя метод дифференциального исчисле­ния, мы можем определить, как меняется средняя производительность от применения различ­ных факторов производства и на сколько процентов можно повысить производительность единичным приращением факторов производства. Из моделей программирования для определения экономически наиболее благоприятного варианта широко применяется линейное программирование, что подтверждается и примером, иллюстрирующим определение размера оросительного объекта, обеспечивающего макси­мальную чистую прибыль. Водохозяйственные сооружения нередко становятся фактором жизни целых поколений людей или фактором, предопределяющим будущее обширных территорий. Это требует все­стороннего анализа, разработки и применения методов, позволяющих выбирать варианты с наибольше общественной полезностью. * * * The mathematical methods of cost-benefit analysis in water management By Dégen, I. Undersecretary of State, Professor In Lhe present advanced stage of water management water has become a pro­duct, which must be produced with increasingly complex technologies, with an increasing amount of labour and with considerable social expenditure. No assessment of the social value of the means expended is possible, unless a scientifically well founded method of analysis is applied. The methodology of cost-benefit analysis as part of the domain of systems analyses, more specifically the applications of differential calculus and programming models are presented in the paper. The aim of cost-benefit analyses is to maximize under certain contraints the economic effect, or to minimize the expenditure, including in both cases the effect of the time factor. In the course thereof the decision criterion, the sphere of costs and benefits together with the method of their evaluation, the rate of discount used in the calculation, as well as the decision constraints must be identified. Programming models can be classified into types using target functions based on the internal rate of interest, on the net benefit and on indices expressing economic efficiency. Marginal programming involving differential calculus is used lo advantage in the formulation of economically optimal development decisions, on the other hand in analysing the production process. Cost-benefit analysis related to investment decisions is illustrated by an example in which the optimal capacity of a water supply scheme has been determined to meet diverse types of water demands in a catchment area. Functions expressing economic relationships can be analysed by methods based on differential calculus also in the domain of optimal production organization. More efficient production organization is illustrated by the example of a regional water works. The volume of water produced, namely the product, and the labour, storage, productive capacity, distribution network, power, namely the factors of production have been related to each other by a function, to wich the method of differential calculus has been applied. In this way the influence of the various factors on average productivity, the percentage product increment per unit increase of the individual factors of production has been determined. Of the programming models linear programming is widely applicable for deter­mining the economically most attractive alternative, as demonstrated by an example in which the economically justified design capacity has been determined for a water resources project to obtain the greatest net benefit. The effects of water

Next

/
Oldalképek
Tartalom