Zsuffa István: Műszaki hidrológia III. (Budapest, 1999)
5.3. A HASZNOSÍTHATÓ VÍZKÉSZLETEK
végül a harmadik sorban jellemzett esemény az Ük adott feltételek melletti értékére felírt összefüggés alapján így is írható P Qo(lk) > Qi > a Qo^k) Q, < X 5.420 Megjegyezzük, hogy az 5.420 összefüggésben a 0<xk reláció egyenértékű az 5.417 összefüggés utolsó sorának a Qmm(tk+1) ^ Qi feltételével. Ezen összefüggések alapján 5.417 így is írható: P(Ük <x) = P[Qm,n(tk+1)>Q1] + (l-e ^)-P[Q0(tk)<Q,] + + P Qo(tk)>Qi. 0áxk~ln^M<x 5.421 Az eloszlásfüggvény vizsgált x változója azonban lehet rövidebb, vagy hosszabb, mint az esemény nélküli xk időszak, (III.-60. ábra). Ennek megfelelően a keresett valószínűség tehát P(Ük<x) = p[Qmin(tk+1)>Q,]+(l-e-Px)-p[Q0(tk)] + + p[Qí á Q0(tk) <Q, •ea'Tk, xk < x] + 5.422 + p[q, -e^'*) <Q0(tk)<Q, -ea'Tk, xk > x A feladat eredeti megfogalmazásának megfelelően a vízhiányos időszakok hosszának a F(x|y) = P(Ük<x|Q,=y) feltételes valószínűségi eloszlásfüggvény-nyalábját kell meghatároznunk. Ennek megfelelően a képletekben Qi értékét a feltételhez kapcsolt független változóval, y-nal helyettesítjük. Az előzőekben leírtak alapján a B típusú modell esetén a lokális minimumok eloszlásfüggvénye F(y) = P(Qn„n áy) = l-e“M'y +(p-y)a -r^l-^-ji-r (p-y) 5.423 201