Szemészet, 2021 (158. évfolyam, 1-4. szám)

2021-03-01 / 1. szám

Mesterséges intelligencia a szemészetben Using Deep Convolutional Neural Networks. JAMA Ophthalmol 2018 Jul 1; 136(7): 803-810. 18. Buchan JC, Amoaku W, Barnes B, Cassels-Brown A, Chang BY, Har­court J, Shickle D, Spencer AF, Vernon SA, MacEwen C. How to defuse a demographic time bomb: the way forward? Eye (Lond) 2017 Nov; 3K11T 1519-1522. 19. Burlina PM, Joshi N, Pekala M, Pacheco KD, Freund DE, Bressler NM. Automated Grading of Age-Related Macular Degeneration From Color Fun­dus Images Using Deep Convolutional Neural Networks. JAMA Ophthalmol 2017 Nov 1:135(11): 1170-1176. 20. Byford, S. AlphaGo beats Lee Se-dol again to take Google DeepMind Challenge series. The Verge. 12 Mar 2016. 21. Chakravarthy U, Goldenberg D, Young G, Havilio M, Rafaeli 0, Benyamini G, Loewenstein A. Automated Identification of Lesion Activity in Neovascu­­lar Age-Related Macular Degeneration. Ophthalmology 2016 Aug; 123(8): 1731-1736. 22. Coscas G, De Benedetto U, Coscas F, Li Calzi Cl, Vismara S, Roudot-Tho­­raval F, Bandello F, Souied E. Hyperreflective dots: a new spectral-domain optical coherence tomography entity for follow-up and prognosis in exu­dative age-related macular degeneration. Ophthalmologica 2013; 229(1): 32-7. 23. Daniel E, Quinn GE, Hildebrand PL, Ells A, Hubbard GB 3rd, Capone A Jr, Martin ER, Ostroff CP, Smith E, Pistilli M, Ying GS; e-ROP Cooperative Group. Validated System for Centralized Grading of Retinopathy of Prema­turity: Telemedicine Approaches to Evaluating Acute-Phase Retinopathy of Prematurity (e-ROP) Study. JAMA Ophthalmol 2015 Jun; 133(6): 675-82. 24. De Fauw J, Ledsam JR, Romera-Paredes B, Nikolov S, Tomasev N, Blackwell S, Askham H, Glorot X, O'Donoghue B, Visentin D, van den Dri­­essche G, Lakshminarayanan B, Meyer C, Mackinder F, Bouton S, Ayoub K, Chopra R, King D, Karthikesalingam A, Hughes CO, Raine R, Hughes J, Sim DA, Egan C, Tufail A, Montgomery H, Hassabis D, Rees G, Back T, Khaw PT, Suleyman M, Cornebise J, Keane PA, Ronneberger 0. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med 2018 Sep; 24(9); 1342-1350. 25. Devalla SK, Liang Z, Pham TH, Boote C, Strouthidis NG, Thiery AH, Girard MJA. Glaucoma management in the era of artificial intelligence. Br J Ophthalmol 2020; 104(3): 301-311. 26. Enger C, Sommer A. Recognizing glaucomatous field loss with the Humphrey STATPAC. Arch Ophthalmol 1987; 105: 1355-1357. 27. European Glaucoma Society. Terminology and Guidelines for Glaucoma, 4th Edition - Part 1. British Journal of Ophthalmology 2017; 101: 63. 28. Everstine BW. U-2 Flies with Artificial Intelligence as Its Co-Pilot. Air­force Magazine 2020. Dec 16. 29. Fleming C, Whitlock EP, Beil T, Smit B, Harris RP. Screening for primary open-angle glaucoma in the primary care setting: an update for the US pre­ventive services task force. Ann Fam Med 2005 Mar-Apr; 3(2): 167-70. 30. Garcia GP, Nitta K, Lavieri MS, Andrews C, Liu X, Lobaza E, Van Oyen MP, Sugiyama K, Stein JD. Using Kalman Filtering to Forecast Disease Trajectory for Patients With Normal Tension Glaucoma. Am J Ophthalmol 2019; 199:111-119. 31. Gargeya R, Leng T. Automated Identification of Diabetic Retinopathy Using Deep Learning. Ophthalmology 2017 Jul; 124(7): 962-969. 32. GBD 2019 Blindness and Vision Impairment Collaborators; Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study. Lancet Glob Health 2021 Feb; 9(2): e144-e160. 33. Gerendas BS, Bogunovic H, Sadeghipour A, Schiegl T, Langs G, Wald­­stein SM, Schmidt-Erfurth U. Computational image analysis for prognosis determination in DME. Vision Res 2017 Oct; 139: 204-210. 34. Gilbert C, Rahi J, Eckstein M, O'Sullivan J, Foster A. Retinopathy of prematurity in middle-income countries. Lancet 1997 Jul 5; 350(9070)- 12-4. 35. Girard MJA, Chin KS, Devalla SK. Deep Learning can Exploit 3D Struc­tural Information of the Optic Nerve Head to Provide a Glaucoma Diagnos­tic Power Superior to that of Retinal Nerve Fibre Layer Thickness. Inves­tigative Ophthalmology 8. Visual Science (ARVO) 2018; 59: 4081. 36. Goldbaum MH, Sample PA, White H, Colt B, Raphaelian P, Fechtner RD, Weinreb RN. Interpretation of automated perimetry for glaucoma by neural network. Invest Ophthalmol Vis Sei 1994; 35: 3362-3373. 37. Goldstine HH. The Computer: from Pascal to von Neumann. Princeton, New Jersey: Princeton University Press; 1972. 38. Grace K, Salvatier J, Dafoe A, Zhang B, Evans 0. When Will Al Exceed Hu­man Performance? Evidence from Al Experts. ArXiv 2018:1705.08807v3. 39. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, Kim R, Raman R, Nelson PC, Mega JL, Webster DR. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photog­raphs. JAMA 2016 Dec 13; 316(22): 2402-2410. 40. Hayashi T, Tabuchi H, Masumoto H, Morita S, Oyakawa I, Inoda S, Kato N, Takahashi H. A Deep Learning Approach in Rebubbling After Descemet's Membrane Endothelial Keratoplasty. Eye Contact Lens 2020 Mar; 46(2)- 121-126. 41. https: //deepmind, com/research/open-source/computational-predicti­­ons-of-protein-structures-associated-with-COVID-19. 42. https: //net.jogtar.hu/getpdf?docid=A1OKO265.MOD8.targetda­­te=S.printTitle=E%C3%BCM+szakmai+protokoll&getdoc=1. 43. https: //. www.inf.u-szeged.hu/ —rfarkas/ML2D/alapfogalmak.html 44. Huang ML, Chen HY. Development and comparison of automated clas­sifiers for glaucoma diagnosis using Stratus optical coherence tomog­raphy. Invest Ophthalmol Vis Sei 2005; 46: 4121-4129. 45. Jammal AA, Thompson AC, Ogata NG, Mariottoni EB, Urata CN, Costa VP, Medeiros FA. Detecting Retinal Nerve Fibre Layer Segmentation Errors on Spectral Domain-Optical Coherence Tomography with a Deep Learning Algorithm. Sei Rep 2019; 9: 9836. 46. Jonas JB, Bourne RR, White RA, Flaxman SR, Keeffe J, Leasher J, Na­idoo K, Pesudovs K, Price H, Wong TY, Resnikoff S, Taylor HR; Vision Loss Expert Group of the Global Burden of Disease Study. Visual impairment and blindness due to macular diseases globally: a systematic review and me­­ta-analysis. Am J Ophthalmol 2014 Oct; 158(4): 808-15. 47. Kalman RE. A New Approach to Linear Filtering and Prediction Prob­lems. Journal of Basic Engineering 1960; 82: 35-45. 48. Kaplan A, Haenlein M. Siri, Siri, in my hand: Who's the fairest in the land? On the interpretations, illustrations, and implications of artificial in­telligence. Business Horizons 2019:15-25. 49. Kovács I, Miháltz K, Kránitz K, Juhász É, Takács Á, Dienes L, Gergely R, Nagy ZZ. Accuracy of machine learning classifiers using bilateral data from a Scheimpflug camera for identifying eyes with preclinical signs of kerato ­conus. J Cataract Refract Surg 2016 Feb; 42(2): 275-83. 50. Kovacs A, Kiss T, Rarosi F, Somfai GM, Facsko A, Degi R. The effect of ranibizumab and aflibercept treatment on the prevalence of outer retinal tabulation and its influence on retreatment in neovascular age-related ma­cular degeneration. BMC Ophthalmol 2018 Nov 14; 18(1): 298. 51. Kucur §S, Holló G, Sznitman R. A deep learning approach to automa­tic detection of early glaucoma from visual fields. PLoS One 2018; 13: e0206081. 52. Kurzweil R. The Singularity is Near. London, UK: Penguin Books, 2005. 53. Lavric A, Valentin P. KeratoDetect: Keratoconus Detection Algorithm Using Convolutional Neural Networks. Comput Intell Neurosci 2019 Jan 23; 2019: 8162567. 54. Lee H, Kang KE, Chung H, Kim HC. Automated Segmentation of Lesions Including Subretinal Hyperreflective Material in Neovascular Age-related Macular Degeneration. Am J Ophthalmol 2018 Jul; 191: 64-75. 55. Li F, Wang Z, Qu G, Song D, Yuan Y, Xu Y, Gao K, Luo G, Xiao Z, Lam DSC, Zhong H, Qiao Y, Zhang X. Automatic differentiation of Glaucoma visual field from non-glaucoma visual filed using deep convolutional neural network. BMC Med Imaging 2018; 18: 35. 56. Li Z, He Y, Keel S, Meng W, Chang RT, He M. Efficacy of a Deep Learning System for Detecting Glaucomatous Optic Neuropathy Based on Color Fun­dus Photographs. Ophthalmology 2018 Aug; 125(8): 1199-1206. 57. McCarthy J, Minsky M, Rochester N, Shannon C. A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955. Al Magazine 2006; 12-14. 58. Mikelberg FS, Parfitt CM, Swindale NV, Graham SL, Drance SM, Gosine R. Ability of the Heidelberg Retina Tomograph to detect early glaucomatous visual field loss. J Glaucoma 1995; 4: 242-247. 59. Naicker S, Plange-Rhule J , Tutt RC , Eastwood JB. Shortage of health­care workers in developing countries - Africa. Ethn Dis 2009; 19: 60-64. 60. Neri E, Coppola F, Miele V, Bibbolino C, Grassi R. Artificial intelligence: Who is responsible for the diagnosis? Radiol Med 2020; 125: 517-521. 61. Niu S, de Sisternes L, Chen Q, Rubin DL, Leng T. Fully Automated Pre­Z X • 13 )

Next

/
Oldalképek
Tartalom