Szemészet, 2017 (154. évfolyam, 1-4. szám)
2017-03-01 / 1. szám
ÜCT angiography of the optic disc Irodalom 1. Koustenis A, Harris A, Gross J, Januleviciene I, Shah A, Siesky B. Optical coherence tomography angiography: an overview of the technology and an assessment of applications for clinical research. Br J Ophthalmol 2017; 101:16-20. 2. Holló G. Intrasession and between visit variability of sector peripapillary angioflow vessel density values measured with the Angiovue optical coherence tomograph in different retinal layers in ocular hypertension and glaucoma. PLoS ONE 2016; 11(8): e0161631. doi:10.1371/journal. pone.0161631 3. Resch M, Németh C, Barcsay G, Ecsedy M, Borbándy Á, Géhl Z, Balogh A, Szabó A, Nagy ZZ, Papp A. Szemfenéki érfestés festék nélkül: Az optikai koherencia tomográfia alapú angiográfia exsudativ típusú időskori maculadegenerációban. Orv Hetil 2016; 157:1683-690. 4. Cai1 Y, Alio del Barrio JL, Wilkins MR, Ang M. Serial optical coherence tomography angiography for corneal vascularization. Graefes Arch Clin Exp Ophthalmol 2017; 255: 135-139. 5. Ang M, Sim DA, Keane PA, Sng CC, Egan CA, Tufail A, Wilkins MR. Optical coherence tomography angiography for anterior segment vasculature imaging. Ophthalmology 2015; 122:1740-1747. 6. Aschinger GC, Schmetterer L, Doblhoff-Dier V, Leitgeb RA, Garhöfer G, Gröschl M, Werkmeister RM. Blood flow velocity vector field reconstruction from dual-beam bidirectional Doppler OCT measurements in retinal veins. Biomed Opt Express 2015; 6:1599-1615. 7. Jia Y, Morrison JC, Tokayer J, Tan 0, Lombardi L, Baumann B, Lu CD, Choi W, Fujimoto JG, Huang D. Quantitative OCT angiography of optic nerve head blood flow. Biomed Opt Express 2012; 3: 3127-3137. 8. Jia Y, Tan 0, Tokayer J, Potsaid B, Wang Y Liu JJ, Kraus ME Subhash H, Fujimoto JG, Hornegger J, Huang D. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express 2012; 20: 4710-4725. 9. Holló G. Vessel density calculated from OCT angiography in three peripapillary sectors in normal, ocular hypertensive and glaucoma eyes. Eur J Ophthalmol 201612; 26: e42-e45. 10. Holló G. Influence of myelinated retinal nerve fibers on retinal vessel density measurement with AngioVue OCT angiography. Int Ophthalmol 2016; 36: 915-919. 11. Holló G. Influence of large intraocular pressure reduction on peripapillary OCT vessel density in ocular hypertensive and glaucoma eyes. J Glaucoma 2017; 26: e7-e10. 12. Yarmohammadi A, Zangwill LM, Diniz-Filho A, Suh MH, Yousefi S, Saunders LJ, Belghith A, Manalastas PI, Medeiros FA, Weinreb RN. Relationship between optical coherence tomography angiography vessel density and severity of visual field loss in glaucoma. Ophthalmology 2016; 123: 2498-2508. 13. Liu L, Jia Y Takusagawa HL, Pechauer AD, Edmunds B, Lombardi L, Davis E, Morrison JC, Huang D. Optical coherence tomography angiography of the peripapillary retina in glaucoma. JAMA Ophthalmol 2015; 133: 1045-1052. 14. Holló G. Combined use of Doppler OCT and en face OCT functions for discrimination of an aneurysm in the lamina cribrosa from a disc haemorrhage. Eur J Ophthalmol 2016; 26: e8—e10. 15. Singh A, Agarwal A, Mahajan S, Karkhur S, Singh R, Bansal R, Dogra MR, Gupta V. Morphological differences between optic disc collaterals and neovascularization on optical coherence tomography angiography. Graefes Arch Clin Exp Ophthalmol. 2016 Dec 9. (Epub ahead of print), DOI: 10.1 Q07/s00417-016-3565-x. 16. Lévéque PM, Zéboulon P Brasnu E, Baudouin C, Labbé A. Optic disc vascularization in glaucoma: value of spectral-domain optical coherence tomography angiography. J Ophthalmol 2016; Article ID 6956717, http://dx.doi.Org/10.1155/2016/6956717 17. Holló G. Relationship between optical coherence tomography sector peripapillary angioflow-density and Octopus visual field cluster mean defect valuea PLoS One 2017, DOI:10.1371/journal.pone,0171541 February 2, 2017 18. Holló G. Relationship between OCT angiography temporal peripapillary vesseldensity and Octopus perimeter paracentral cluster mean defect. J Glaucoma [Published online 2017) doi: 10.1097/IJG.0000000000000630 19. Lee EJ, Lee KM, Lee SH, Kim TW. OCT angiography of the peripapillary retina in primary open-angle glaucoma. Invest Ophthalmol Vis Sei 2016; 57: 6265-6270. 20. Suh MH, Zangwill LM, Manalastas PI, Belghith A, Yarmohammadi A, Medeiros FA, Diniz-Filho A, Saunders LJ, Yousefi S, Weinreb RN. Optical coherence tomography angiography vessel density in glaucomatous eyes with focal lamina cribrosa defects. Ophthalmology 2016; 123: 2309-2317. 21. Wang X, Jiang С, Ко T, Kong X, Yu X, Min W, Shi G, Sun X. Correlation between optic disc perfusion and glaucomatous severity in patients with open-angle glaucoma: an optical coherence tomography angiography study. Graefes Arch Clin Exp Ophthalmol 2015; 253:1557-1564. 22. Yarmohammadi A, Zangwill LM, Diniz-Filho A, Suh MH, Manalastas PI, Fatehee N, Yousefi S, Beghiht A, Saunders LJ, Medeiros FA, Huang D, Weinreb RN. Optical coherence tomography angiography vessel density in healthy, glaucoma suspect, and glaucoma eyes. Invest Ophthalmol Vis Sei 2016; 57: 0CT451-0CT459. 23. Rao HL, Pradhan ZS, Weinreb RN, Reddy HB, Riyazuddin M, Dasari S, Palakurthy M, Puttaiah NK, Rao DA, Webers CA. Regional comparisons of optical coherence tomography angiography vessel density in primary openangle glaucoma. Am J Ophthalmol 2016; 171: 75-83. 24. Rao HL, Kadambi SV Weinreb RN, Puttaiah NK, Pradhan ZS, Rao DA, Kumar RS, Webers CA, Shetty R. Diagnostic ability of peripapillary vessel density measurements of optical coherence tomography angiography in primary open-angle and angle-closure glaucoma. Br J Ophthalmol 2016 Nov 29. (Epub ahead of print], doi: 10.113B/bjophthalmol-2016—309377. 25. Suh MH, Zangwill LM, Manalastas PI, Belghith A, Yarmohammadi A, Medeiros FA, Diniz-Filho A, Saunders LJ, Weinreb RN. Deep retinal layer microvasculature dropout detected by the optical coherence tomography angiography in glaucoma. Ophthalmology 2016; 123: 2509-2518. 26. Kumar RS, Anegondi N, Chandapura RS, Sudhakaran S, Kadambi SV, Rao HL, Aung T Sinha Roy A. Discriminant function of optical coherence tomography angiography to determine disease severity in glaucoma. Invest Ophthalmol Vis Sei 2016; 57:6079-6088. 27. Monsalve B, Ferreras A, Calvo P Urcola JA, Figus M, Monsalve J, Frezzotti P Diagnostic ability of Humphrey perimetry, Octopus perimetry, and optical coherence tomography for glaucomatous optic neuropathy. Eye (Lond) 2016Nov11. (Epub ahead of print) doi: 10.1038/eye.2016.251. 28. Pechauer AD, Jia Y, Liu L, Gao SS, Jiang C, Huang D. Optical coherence tomography angiography of peripapillary retinal blood flow response to hyperoxia. Invest Ophthalmol Vis Sei 2015; 56: 3287-3291. 29. Xu H, Deng G, Jiang C, Kong X, Yu J, Sun X. Microcirculatory responses to hyperoxia in macular and peripapillary regions. Invest Ophthalmol Vis Sei 2016;57:4464-4468. 30. Holló G. Optikai koherencia tomográfia glaucomában: Alapvető szempontok, hibás és helyes gyakorlat. Szemészet 2015; 153:112-121. 31. Holló G. How to overcome imaging artifacts and prevent misinterpretation of imaging results? In: BhartiyaS, Ichhpujani P Clinical Cases in Glaucoma. An Evidence-based Approach. Delhi - Now York: Jaypee Brothers; 2017. p. 145-152. 32. Schwab C, Glatz W, Schmidt B, Lindner E, Oettl K, Riedl R, Wedrich A, Ivastinovic D, Velikay-Parel M, Mossboeck G. Prevalence of posterior vitreous detachment in glaucoma patients and controls. Acta Ophthalmol 2016 Dec 14. (Epub ahead of print), doi: 10.1111/aos.13339. 33. Mansoori T, Sivaswamy J Gamalapati JS, Agraharam SG, Balakrishna N. Measurement of radial peripapillary capillary density in the normal human retina using optical coherence tomography angiography. J Glaucoma 2016 Nov 30. (Epub ahead of print), DOI: 10.1097/IJG.0000000000000594. Levelezési cím Holló Gábor, Semmelweis Egyetem, Szemészeti Klinika, 1G85 Budapest, Mária u. 39., E-mail: hollo.gabor@med.semmelweis-univ.hu