183621. lajstromszámú szabadalom • Röntgenfluoreszcencia analizátor elrendezés
1 183 621 2 1-10 W-os röntgencsövekkel optimális feltételek mellett a fenti beütésszámok 100-1000-szerese is elérhető. Ez a statisztikus hiba szerepének lényeges lecsökkenését eredményezheti, ami a mérési idő lecsökkenésében és/vagy az elérhető pontosság javulásában mutatkozhat meg. Másrészt belátható, hogy az ionizációs számláló röntgensugárzás iránti érzéketlenségére vonatkozó feltételezés impulzus-centrikus szemléleten alapul. Valóban, a kisenergiájú (<15 keV) röntgensugarakra az ionizációs érzékelők olyan kis impulzusokat adnak, amelyek szobahőmérsékletű elektronikus elemekkel nem dolgozhatók fel eredményesen. Azonban ha impulzusszámlálásról az ionizációs áram mérésére, vagy egy adott időtartam alatt keletkező töltésmennyiség meghatározására térünk át, nagy intenzitások detektálására is alkalmas, holtidő nélküli érzékelőt kapunk. A röntgensugárzás abszorpciója az ionizációs kamra gázában semmivel sem marad el a hasonló töltetű proporcionális számláló mögött, és megfelelő nemesgáz töltet (Ar, Kr, Xe), nyomás és kamraméret alkalmazásával elérhető 50%-nál nagyobb abszorbció is. Az ion-rekombináció korlátozása az elektróda-távolság, gáztisztaság, gáznyomás, kamraméret és tápfeszültség összehangolásával érhető el. A modem elektrométerek lehetővé teszik a keletkező áramok (töltések) pontos meghatározását. A gáztöltésű ionizációs kamrához hasonlóan a félvezető- ill. szilárdtest érzékelők is lehetővé teszik az ionizációs áram mérésére történő áttérést, ezért a továbbiakban ionizációs érzékelőnek tekintünk minden detektort, amelyben a röntgensugárzás által keltett töltéshordozó pároknak a detektor elektródáihoz történő mozgása útján jön létre az ionizációs áram, függetlenül a detektor konstrukciójától, anyagától, annak halmazállapotától. Mivel az ionizációs áram mérése esetén energia szelekció az érzékelő jelei alapján nem lehetséges, azt detektálás előtt kell elvégezni. Belátható, hogy a legnagyobb érzékenység kiegyensúlyozott szűrőpárok energiaszelektorként történő felhasználásával érhető el. Árammérés esetén az eredmény a méréssel egyidejűleg leolvasható, ami igen gyors mérést tesz lehetővé. A pontosság növelhető, ha közvetlen árammérés helyett egy meghatározott idő alatt létrejövő töltést mérjük. Ekkor a mérési időt a kívánt érzékenységnek megfelelően választhatjuk meg. összefoglalva, a találmány szerinti röntgenfluoreszcencia analizátor (érzékelő) a minta elektromágneses (röntgen vagy gamma) sugárzással történő gerjesztésén, kiegyensúlyozott szűrőpár energiaszelektorként történő alkalmazásán és az érzékelőként alkalmazott ionizációs detektor áramának vagy ionizációs töltésének a mérésén alapul. A gerjesztő elektromágneses sugárzás eredhet radioaktív forrásból, gyorsítóból stb., legcélszerűbben azonban röntgencsővel állítható elő a röntgenfluoreszcencia analízis által igényelt energiatartományban. 3) A találmány szerinti elrendezésben (1. ábra) az R sugárforrás, ami röntgencső is lehet, az M minta és az E energiaszelektív érzékelőként alkalmazott K (vagy L) abszorpciós él típusú kiegyensúlyozott SZ szűrőpár, és IE ionizációs érzékelő(k) elhelyezése olyan, hogy az R sugárforrásból jövő primer sugárzás besugározza az M mintát, az E energiaszelektív érzékelőt azonban csak az M mintából jövő másodlagos sugárzás éri, és az elnyelődik az érzékelő hasznos térfogatában. Az ionizác ós érzékelők árama az AQ áram- és/vagy töltésmérőbe jut. A találmány kiviteli alakjait szE energiaszelektív érzékelő konkrét alakja különbözteti meg egymástól és minden más röntgenfluoreszcencia analizátortól. \z első kiviteli alakban (2. ábra) azE energiaszelektív érzékelő a D ionizációs érzékelőből és a felváltva eléje helyezhető kiegyensúlyozott szűrőpámak a vizsgált karakterisztikus sugárzás feletti abszorbciós élű SZF felülvágó, illetve az az alatti abszorbciós élű SZA alulvágó tagjából áll. A D ionizációs érzékelő kimenete az AQ áram- és/vagy töltésmérő egység bemenetére van kapcsolva A szűrőpár két helyzetében mért áram és/vagy töltés különbsége jellemző lesz a szűrők abszorpciós élei közötti enegia-intervallumba eső röntgensugárzások intenzitása a. Ebből megfelelő hitelesítéssel a vizsgált elem konceitrációja meghatározható. A második kiviteli alak (3. ábra) esetében a kiegyensúlyozott szűrőpár SZF felülvágó és SZA alulvágó tagja a független Dl és D2 ionizációs érzékelők elé helyezve alkotják az E energiaszelektív érzékelőt. A Dl és D2 ionizációs érzékelők kimenetei a különbséget képező K 4Q áram- és/vagy töltésmérő bemenetére van kapcolva. Az első elrendezéshez képest előnye, hogy az e edményt egyetlen mérésben kapjuk meg és nincs szükség a kiegyensúlyozott szűrőpár mozgatására. Hátránya, hogy egy helyett két ionizációs érzékelőt igényel. A harmadik elrendezés (4. ábra) abban különbözik a másodiktól, hogy a DJ és D4 ionizációs érzékelők esetében az irodalomból ismert (Enciklopedic Dictionary of Physics, ed. J. Thewlis, Pergamon Press, Oxford, 1961. Vol, 4., p 52) kompenzációs kapcsolást alkalmazzuk. Ezek a kiegyensúlyozott szűrőpárra] együtt alkotják az E energiaszelektív érzékelőt. A kompenzációs kapcsolás azt jelenti, hogy az érzékelők független elektródja ellenkező polaritású tápfeszültséget kap, így a közös elektródán a két érzékelő különbségi árama jelenik meg. Ez a különbségi áram jut az AQ^ áram és/vagy töltésmérő bemenetére. Ez az elrendezés egyszerűbb elektronikát igéíyel, mint a második, mert csak a különbségi áram mérése szükséges, hátránya, hogy két különböző polaritású tápfeszültséget kell használni. 4) A szabadalom tárgyát képező elrendezés előnyei az izonos kategóriába, azaz a harmadik csoportba tartozó műszerekkel szemben a következők: hasonló mérési idők mellett kb. egy nagyságrenddel csökkenthető a meghatározás hibája, vagy ami ezzel egyenértékű a kimutatható minimális koncentiáció értéke. Ez az alkalmazhatósági kör arányos kibővülését eredményezi. Az elrendezés érzékenysége egyes esetekben elérheti az első és második csoportba sorolt analizátorokét is. À kristálydiffrakciós röntgenfluoreszcencia analizátorokkal szemben előnye az egyszerűsége, kis fogyasztása, üzemi és terepkörülmények közötti alkalmazhatósága. Ez kedvezővé teszi felhasználását folyamatszabályozásban; olyan nagyméretű tárgyak és alkatrészek vizsgálatánál, amelyekből nem készíthető minta. Mind a kri. álydiffrakciós, mind az energiaszelektív analizátorokkal szemben előnye a jelen találmánynak a meghatározás gyorsasága, ami nagy mintaszám, vagy gyors folyamatszabályozás esetén jelent további előnyt. 5 10 15 20 25 30 35 40 45 50 55 60 3