Marisia - Maros Megyei Múzeum Évkönyve 35/2. (2015)

Zoology

S. NEAGU, R. COJOC, M. ENACHE, I. GOMOIU, G. GHEMES, A. GHEORGHE, M. TUDORACHE Acknowledgements This work was supported by Program Partnerships in Priority Domains — PN II developed with the support of MEN-UEFISCDI, Project no.273/214. REFERENCES 1. Dharmadi, Y., Murarka, A., Gonzalez, R., 2006, Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering. Biotechnol Bioeng 94:&2\—d>29. 2. Kumar, P., Mehariya, S., Ray, S., Mishra, A., Kalia, V.C.m 2014, Biodiesel Industry Waste: A Potential Source of Bioenergy and Biopolymers. Indian J Microbiol. DOI 10.1007/s 12088-014-0509—1 3. Lee, P.C., Lee, W.G., Lee, S.Y., Chang, H.N., 2001, Succinic acid production with reduced by-product forma­tion in the fermentation of Anaerobiospirillum succiniciproducens using glycerol as a carbon source. Biotechnol Bioeng72\4\—4<&. 4. Li, Y, Ge, X, Tian, P, 2013, Gene arrangements in expression vector affect 3-hydroxypropionic acid production in Klebsiella pneumoniae. Indian J Microbiol 53:418-424. 5. Маш, ВТ, Bielen, AAM, Kengen, SWM, Constanti, M, Medina, E, 2012, Biohydrogen production from glyc­erol using Thermotoga spp. Energy Procedia 29:300—307 6. Маш, ВТ, Bielen, AAM, Constanti, M, Medina, L, Kengen, SWM, 2013, Glycerol fermentation to hydrogen by Thermotoga maritima: proposed pathway and bioenergedc considerations. Int J Hydrogen Energy 38:5563—5572 7. Papanikolaou, S, Aggelis, G, 2002, Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresour Technoi 82:43—49. 8. Papanikolaou, S, Fick, M, Aggelis, G, 2004, The effect of raw glycerol concentration on the production of 1,3-propanediol by Clostridium butyricum. J Chem Technoi Biotechnol 79:1189—1196. 9. Poolman B, Glaasker E (1998) Regulation of compatible solute accumulation in bacteria. Mol. Microbiol, 29, 2,397-407. 10. Sarma, SJ, Brar, SK, Bihan, YL, Buelna, G, 2013, Bio-hydrogen production by biodiesel-derived crude glycerol bioconversion: a techno-economic evaluation Bioprocess Biosyst Eng (2013) 36:1—10 11. Sarma, SJ, Brar, SK, Sydney, EB, Bihan, YL, Buelna, G, Soccol, CR, 2012, Microbial hydrogen production by bioconversion of crude glycerol: A review, Int J Hydrogen Energy 37: 6473—6490 12. Sharninghausen, LS, Campos, J, Manas, MG, Crabtree, RH, 2014, Efficient selective and atom economic catalytic conversion of glycerol to lactic acid of glycerol to lactic acid. Nat Commun 5:5084. 13. Tan, HW, Abdul Aziz AR, Aroua, MK, 2013, Glycerol production and its applications as a raw material: a review. Renew Sustain Energy Rev 27:118—127. 14. Ventosa, A, Garcia, MT, Kamekura, M, Onishi, H, Ruiz-Berraquero, F, 1989, Bacillus halophilus sp. nov., a new moderately halophilic Bacillus species, Syst. Appl. Microbiol., 12, 162—166. 15. Wang, K, Wang, X, Xizhen, G, Tian, P, 2012, Heterologous expression of aldehyde dehydrogenase from Saccharomyces cerevisiae in Klebsiella pneumoniae for 3-hydroxypropionic acid production from glycerol. Indian J Microbiol 52:478—483. 16. Wang, C, Dou, B, Chen, H, Song, Y, Xu, Y, Du, X, Zhang, L, Luo, T, Tan, C, 2013, Renewable hydrogen production from steam reforming of glycerol by Ni—Cu—Al, Ni—Cu—Mg, Ni—Mg catalysts. Int J Hydrogen Energy 38:3562—3571 17. Yang, F, Hanna, MA, Sun, R, 2012, Value-added uses for crude glycerol-a byproduct of biodiesel production. Biotechnol Biofuels 5:13. 18. Available from: http://biodiesel-news.com/index.php/2010/03/22/global-biodiesel-market-analysis-and-fore­­casts-to-2020/. 19. Available from: http://www.marketsandmarkets.com/PressReleases/global-biodiesel-market.asp . 72

Next

/
Oldalképek
Tartalom