Marisia - Maros Megyei Múzeum Évkönyve 29-30/2. (2010)

Zoology

The Allometric Condition Factor corresponding to each cyprinid species was calculated by the two distinct methods: 1) variable b coefficient obtained for each subsample, extracted before and after winter season and 2) constant b coefficient for the two seasons (autumn and spring). The equations of weight/length relationship adjusted to individuals separated for each subsample, extracted at the beginning and the end of the winter respectively is shown in table 5. It can observe b coefficient tends to 3 value in all four species that is in agreement with previous results cited by scientific papers [11]. A bigger value of determination coefficient (R-squared) than 0.8805 shows a high degree of confidence of weigh/length relationship from the regression curve. Application of allometric condition factor in studying of wintering period influence _____________________________________________________________ on the condition status of juvenile reared Cyprinids species ____________________________________________________________ Tab. 5: Allometric method for calculation of Condition Factor using variable b coefficient (corresponding to mathematic relationship between weight and length of the individuals separated for each subsample extracted before and after winter during the three experiments) „ Nr of analysed 3 I individuals of each Weight/length relationship Weight/length relationship 8^ 5 seas°nal subsample Season (variable b value, Brates (variable b value, Vlädesti 5/5 JS"1 Brates Vladesti sampling station) sampling station) __________station station_____________________________________________________________________________ 57 50 Autumn W= 0.0296*Ű0264 W = 0.0461 * L18068 R2 = 0.9525 R2 = 0.9207 CL, Z, э-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------3 46 61 Spring W= 0.013 *L3 3014 W= 0.0269 * L2 9857 §_____________________________________R2 = 0.9648__________________R2 = 0,9561______________ I 25 Autumn W= 0.0238 * L3 0855 U j__________________________________R2 = 0.9818___________________________________________ 75 Spring W = 0.0159 * 2?2557 __________________________________________R2 = 0.9696__________________________________________ 29 Autumn ^ ~ 0.0272 * L Defficient data 2_________________________________R2 = 0.9816___________________________________________ §* 83 Spring W- 0.0178*2 Defficient data £______________________________________R2 = 0.983___________________________________________ j 17 Autumn W= 0.0195* I29886 j_________________________________R2 = 0.9914__________________________________________ 25 Spring W = 0.0174 * Z,2"27 __________________________________________R2 = 0.9742__________________________________________ 95 204 Autumn W = 0.0314 *L2'7548 W = 0.0243 * I?TM 2 j_________________________________R2 = 0.9659__________________R2 = 0.8805______________ ft ’ 57 7i Spring W= 0.0163 *L2mA W = 0.011 * L31368 5_____________________________________R2 = 0.9313__________________R2 = 0.9517______________ I 34 Autumn W= 0.0182* Ü9324 j_________________________________R2 = 0.9752___________________________________________ 146 Spring W= 0.0193* I2 9007 _J_J_____________________________ R2 = 0.8585__________________________________________ 87

Next

/
Oldalképek
Tartalom