Hidrológiai Közlöny, 2021 (101. évfolyam)

2021 / 3. szám

58 Hidrológiai Közlöny 2021. 101. évf. 3. szám MED Joint Process (2006). WFD /EUWI Water scar­city drafting group documentWater scarcity management in the context os WFG. SCG agenda point 8b WGB/15160506/25d. June 2006. More, TT, J.S.S. Yadav, S. Yan, R.D. Tyagi, (2014): Surampalli, R.Y. Extracellular polymeric substances of bacteria and their potential environmental applications. J. Environ. Manag. 2014, 144, 1-25. Morgan-Sagastume, F., F. Valentino, M. F[jort, D. Cirne, L. Karabegovic, F. Gerardin, P. Johansson, A. Karlsson, P. Magnusson, T. Alexandersson (2014). Poly­­hydroxyalkanoate (PHA) production from sludge and mu­nicipal wastewater treatment. Water Sei. Technoi. A J. Int. Assoc. Water Pollut. Res. 2014, 69, 177-184. Mulchandani, A., P. Westerho (2016). Recovery op­portunities for metals and energy from sewage sludges. Bi­oresource Technoi. 2016, 215, 215-226. Nabarlatz, D., J. Vondrysova, P. Jenicek, F. Stüber, J. Font, A. Fortuny, A. Fabregat, C. Bengoa (2010). Hydro­lytic enzymes in activated sludge: Extraction of protease and lipase by stirring and ultrasonication. Ultrason. Sono­­chem., 17, 923-931. Olkiewicz, M.; N.V. Plechkova, M.J. Earle, A. Fa­bregat, F. Stüber, A. Fortuny, J. Font, C. Bengoa, J.F. Ca­­pafons (2016). Biodiesel production from sewage sludge lipids catalysed by Bronsted acidic ionic liquids. Appl. Catal. B Environ. 2016, 181, 738-746. Olsson, G. (2015). Water and Energy: Threats and Op­portunities. IWA Publishing, London. https://doi.org/10.2166/9781780406947. OVF (2014). Szennyvíziszap kezelési és hasznosítási stratégia 2014-2023. http://biopsol.hu/files/file/Szennyviziszap_kezelesi_es_ha sznositasi_strategia_2018_2023.pdf Letöltés időpontja: 2021. június 10. Pilli, S., P. Bhunia, S. Yan, R.J. LeBlanc, R.D. Tyagi, R. Y. Surampalli (2011). Ultrasonic pretreatment of sludge: A review. Ultrason. Sonochem. 18, 1-18. Rezaee, F., S. Danesh, M. Tavakkolizadeh, M. Moham­­madi-Khatami, (2019). Investigating chemical, physical and mechanical properties of eco-cement produced using dry sewage sludge and traditional raw materials. J. Clean. Prod. 2019,214, 749-757. Román P. (2012). Szennyvíziszap hasznosítása. Inter­net publikáció. Letöltés időpontja: 2021. június 1. Https://www.bitesz.hu/wp­content/uploads/2017/05/Rom%C3%aln-P%C3%al 1- Szennyv%C3%adziszap-hasz­­nos%C3%adt%C3%a 1 sa.pdf Román P. (2016). Hulladékhasznosítás az Észak-pesti Szennyvíztisztító Telepen. Internet publikáció. https://docplayer.hu/107609173-Hulladekhasznositas-az­­eszak-pesti-szennyviztisztito-telepen-roman-pal-fovarosi­­csatomazasi-muvek-zrt.html Letöltés időpontja: 2021. jú­nius 4. Ruffino, B., G. Campo, G. Genon, E. Lorenzi, D. Novarino, G. Scibilia, M. Zanetti (2015). Improvement of anaerobic digestion of sewage sludge in a wastewater treatment plant by means of mechanical and thermal pre­treatments: Performance, energy and economical assess­ment. Bioresour. Technoi., 175, 298-308. Ruiken, C.J., G.E. Breuer, E. Klaversma, T. Santiago, M. C.M. van Loosdrecht (2013). Sieving wastewater - Cel­lulose recovery, economic and energy evaluation. Water Re­search. Volume 47, Issue 1, 1 January 2013, Pages 43-48. Sanivation (2021). https://sanivation.com/naivasha Le­töltés időpontja: 2021. május 20. Sari, M.A., M. Badruzzaman, C. Cherchi, M. Swindle, N. Ajami, J.G. Jacangelo (2018). Recent innovations and trends in in-conduit hydropower technologies and their ap­plications in water distribution systems. J. Environ. Manag. 2018,228,416^128 Shen, C„ Z. Lei, G. Lv, L. Ni, S. Deng (2019). An ex­perimental investigation on a novel WWSHP system with the heat recovery through the evaporation of wastewater using circulating air as a medium. Energy Build. 2019, 191, 117-126. Smith, K. M., G. D. Fowler, S. Pulikét, N. J. D. Graham (2009). Sewage sludge-based adsorbents: A review of their production, properties and use in water treatment applica­tions. Water Res. 2009, 43, 2569-2594. Smol, M., C. Adam, M. Preisner (2020). Circular econ­omy model framework in the European water and wastewater sector Journal of Material Cycles and Waste Management, 2020. 22:682-697 https://d0i.0rg/l 0.1007/s 10163-019-00960-z Staher, IV.R., E. MacArthur (2019). The circular Econ­omy. A User’s Guide. https://doi.org/10.4324/9780429259203. Stanchev, P., V. Vasilaki, J. Dosta, E. Katsou, (2017). Measuring the circular economy of water sector in the three-fold linkage of water, energy and materials. http://uest.ntua.gr/athens2017/proceedings/pdfs/Athens20 17_Stanchev_Vasilaki_Mousavi_Dosta_Katsou.pdf Takabatake, H., H. Satoh, T. Mino, T. Matsuo (2000). Recovery of biodegradable plastics from activated sludge process. Water Sei. Technoi. 2000, 42, 351-356. TamisJ., M. Mulders, H. Dijkman R. Rozendal (2018). Pilot-scale polyhydroxyalkanoate production from paper mill wastewater: process characteristics and identification of bottlenecks for full-scale implementation. Journal of Environmental Engineering. Volume 144 Issue 10 - Octo­ber 2018. Tang, J., J. He, T. Liu, X. Xin, H. Hu (2017). Removal of heavy metal from sludge by the combined application of a biodegradable biosurfactant and complexing agent in enhanced electrokinetic treatment. Chemosphere 2017, 189,599-608. Tang, J., C. Zhang, X. Shi, J. Sun, J.A. Cunningham (2019). Municipal wastewater treatment plants coupled with electrochemical, biological and bio-electrochemical technologies: Opportunities and challenge toward energy self-su ciency. J. Environ. Manag. 2019, 234, 396^103. Tilmans, Sebastien, igazgató, Codiga Resource Recov­ery Center, Stanford University (szóbeli közlés). Brave Blue World dokumentumfilm

Next

/
Oldalképek
Tartalom