Hidrológiai Közlöny, 2015 (95. évfolyam)

2015 / 5-6. különszám - LVI. Hidrobiológus Napok előadásai

8 HIDROLÓGIAI KÖZLÖNY 2015. 95. ÉVF. 5-6.. SZ. aktív források, mint amilyen a Diana-Hygieia is, egye­dülálló élőhelyet biztosítanak a mikrobiális élet számára. Köszönetnyilvánítás A kutatást az OTKA NK101356 pályázat támogatásával végeztük. Irodalom Barton H.A., Taylor N.M., Kreate M.P., Springer A.C., Oehrle S.A., BertogJ.L. (2007): The impact of host rock geochemistry on bac­terial community structure in oligotrophic cave environments.- Int. J. Speleol. 36:93-104. Borsodi A.K., Knáb M, Krett G., Makk J., Márialigeti K.. Erőss A., Mádl-Szönyi J. (2012): Biofilm bacterial communities inhabiting the cave walls of the Buda Thermal Karst System, Hungary.- Geo- microbiol. J. 29 (7): 611-627. Chelius M.K., Moore J.C. (2004): Molecular phylogenetic analysis of Archaea and Bacteria in Wind Cave, South Dakota.-Geomicrobiol. J. 21 (2): 123-134. Coates J.D., Phillips E.J., Lonergan D.J., Jenter H., Lovley D.R. (1996): Isolation of Geobacter species from diverse sedimentary environments.- Appl. Environ. Microbiol. 62: 1531-1536. Erőss A., Mádl-Szőnyi J., Surbeck H„ Horváth A., Goldscheider N., Csorna A. É. (2012): Radionuclides as natural tracers for the cha­racterization of fluids in regional discharge areas, Buda Thermal Karst, Hungary. Journal of Hydrology 426-427:124-137. Grégoire P., Fardeau M.L., Guasco S., Logiere J., Cambar J., Micho- tey V. (2012): Desulfosoma profundi sp. nov., a thermophilic sulfa­te-reducing bacterium isolated from a deep terrestrial geothermal spring in France.- Antonie Van Leeuwenhoek. 101 (3): 595- 602. Lebedeva E.V., OffS., Zumbrägel S., Kruse M, Shagzhina A., Liicker S., Maixner F., Lipski A., Daims H., Spieck E. (2011): Isolation and characterization of a moderately thermophilic nitrite-oxidizing bacterium from a geothermal spring.- FEMS Microbiol. Ecol. 75 (2): 195-204. Lloyd J.R., Chesnes J., Glauser S., Bunker D.J., Livens F.R., Lovley D.R. (2002): Reduction of actinides and fisson products by Fe(III)- reducing bacteria.-Geomicrobiol. J. 19: 103-120. Mádl-Szönyi J. (2014): Basin scale generalized flow model for deep and thick carbonate regions. Hydrogeology Journal (in press) Marks C.R., Stevenson B.S., Rudd S., Lawson P.Ä. (2012): Nitrospira dominated bioftlm within a thermal artesian spring: a case for nit­rification □ driven primary production in a geothermal setting. - Geobiology. 10 (5): 457-466. Methe B.A., Nelson K.E., Eisen J.A., Paulsen I.T., Nelson W., Heidel­berg J.F., Wu D., Wu M., Ward N, Beanan M.J., Dodson R.J., Ma­dupu R., Brinkac L.M., Daugherty S.C., DeBoy R.T., Durkin A.S., Gwinn M., Kolonay J.F., Sullivan S.A., Haft D.H., Selengut J., Da- vidsen T.M., Zafar N., White O., Tran B„ Romero C„ Forberger H.A.,Weidman J., Khouri H., Feldblyum T.V., Utterback T.R., Van Aken S.E., Lovley D.R., Fraser C.M. (2003): Genome of Geobac­ter sulfurreducens: metal reduction in subsurface environments.- Science. 302: 1967-1969. Palotai M., Mádl-Szönyi J., Horváth Á. (2005): A budapesti Gellért- és a József-hegy felszín alatti vizeiben mért radon- és rádiumtartalom lehetséges forrásai.- Általános Földtani Szemle. 29:25-40. Pachiadaki M.G., Lykousis V., Stefanou E.G., Kormos KA. (2010): Prokaryotic community structure and diversity in the sediments of an active submarine mud volcano (Kazan mud volcano, East Me­diterranean Sea).- FEMS Microbiol. Ecol. 72 (3): 429-44. Porter M.L., Engel A.S., Kane T.C., Kinkle B.K. (2009): Productivity- diversity relationships from chemolithoautotrophically based sulfi- dic karst systems.- Int. J. Speleol. 28: 27-40. Rusznyák A., Akob D M., Nietzsche S., Eusterhues K„ Totsche K.U., Neu T.R., Frosche T, Poppe J., Keinere R„ Geletneky J., Katzsch- mann L., Schulze E.D., Kiisel K. (2011): Calcite biomineralization by bacterial isolates from the recently discovered pristine karstic Herrenberg Cave.- Appl. Environ. Microbiol. 78 (4): 1157-1167. Sorokin D.Y., Tourova T.P., Broker G., Muyzer G. (2007): Thiohalom- onas denitrificans gen. nov., sp. nov. and Thiohalomonas nitratire- ducens sp. nov., novel obligately chemolithoautotrophic, modera­tely halophilic, thiodenitrifying Gammaproteobacteria from hyper­saline habitats.- Int. J. Syst. Evol. Microbiol. 57 (7): 1582-1589. Weidler G.W., Dornmayr-Pfaffenhuemer M., Gerbl F.W., Heinen W., Stan-Lotter H. (2007): Communities of Archaea and Bacteria in a subsurface radioactive thermal spring in the Austrian Central Alps, and evidence of ammonia-oxidizing Crenarchaeota.- Appl. Envi­ron. Microbiol. 73 (1): 259-270. Yu Y, Li H.R., Zeng Y.X., Chen B. (2011): Bacillus beringensis sp. nov., a psychrotolerant bacterium isolated from the Bering Sea.- Antonie Van Leeuwenhoek. 99 (3): 551- 557. Zaitsev G.M., Tsitko I. V., Rainey F.A., Trotsenko Y.A., Uotila J.S., Sta­ckebrandt E., Salkinoja- Salonen M.S. (1998): New aerobic ammo­nium-dependent obligately oxalotrophic bacteria: description of Ammoniphilus oxalaticus gen. nov., sp. nov. and Ammoniphilus o- xalivorans gen. nov., sp. nov.- Int. J. Syst. Bacteriol. 48 (1): 151- 163. Zhang J., Wang J., Fang C., Song F., Xin Y, Qu L., Ding K. (2010): Bacillus oceanisediminis sp. nov., isolated from marine sediment. - Int. J. Syst. Evol. Microbiol. 60 (12): 2924-2929. Diversity of the bacterial communities detected in the water and biofdm of the Diana-Hygieia Thermal Spring located in the Buda Themal Karst System Abstract: Keywords: Anda D., Krett G., Büki G., Makk J., Márialigeti K., Erőss A., Mádl-Szönyi J., Borsodi A. The high radon containing Diana-Hygieia thermal spring of the Rudas spa is located in the southern discharge region of the Buda Thermal Karst System. Cultivation based and molecular cloning methods were simultane­ously used to reveal the phylogenetic diversity of bacterial communities adapted to this radioactive environment and found in the water and in the biofilm on the rock surfaces. The identification of representative strains was based on partial 16S rDNA sequence analysis. The phyla Actinobacteria, Firmicutes and Proteobacteria were represented by both bacterial strains and molecular clones but phyla Acidobacteria, Chlorobi, Chlorofexi, Gemmatimonadetes, Nitrospirae and Thermotogae only by molecular clones which showed the highest similar­ity to uncultured clone sequences originating from different environmental sources. The biofilm bacterial com­munity proved to be somewhat more diverse (dominated by Deltaproteobacteria) than that of the water sample (dominated by Betaproteobacteria). The most frequent molecular clones showed the highest similarity to the chemolithotrophic iron (Ill)-reducing, thermophilic nitrite-oxidizing and sulfate-reducing species. Buda Thermal Karst System, 16S rDNA, molecular cloning, cultivation, diversity.

Next

/
Oldalképek
Tartalom