Hidrológiai Közlöny 2003 (83. évfolyam)
6. szám - Imre Emőke–McDougall, John–Farkas József–Kovács Miklós–Czap Zoltán-V. E. D. Monteiro–Treng Phong: A bio-degradációs hulladéktárolás
IMRE E. és munkatársai: A bio-degrrad&ciós hulladéktárolás 379 Irodalom Ahmed, S, Khanbilvardi, R.M., Fillos, J, & Gleason, P.J. (1992). Two dimensional leachate estimation through landfill. J Hydr. Eng., Am. Soc. Civ. Eng. 118, No.2,306-322. Aragno, M. (1988). The Landfill Ecosystem : A Microbiologist's Look Inside a "Black Box". In P. Baccini (Ed ), The Landfill - Reactor and Final Storage. Swiss Workshop on Land Disposal of Solid Wastes, Gerzensee: SpringerVerlag. Blight, G. E., Novella, P. H., Stow, J. G. (2001). Increasing the field capacity of a landfill to retain leachate. Proc. of the Int. Conference on In Situ Measurement of Soil Properties and Case Histories. Bandung, Indonesia. 277-283. Chian, E. S. K., & DeWalle, F. B. (1976). Sanitary Landfill Leachate and their Treatment. Journal of the Environmental Engineering Division, ASCE, v,102(EE2), p.41 1. Chian, E. S. K., Pohland, F. G., Chang, K. C„ & Harper, S. R. (1985). Leachate Generation and Control at Landfill Disposal Sites. Paper presented at the International Conference New Directions and Research in Waste Treatment and Residuals Management, University of B.C. Vancouver, Canada. Christensen TH, Cossu R & Stegmann R, CISA, Cagliari, Vol. 3, pp 481-90. Ehrig, H. J. (1983). Quality and quantity of sanitary landfill leachate. Waste Management and Research, I, 53-68. Christensen, T. H., & Kjeldsen, P. (1989). Basic Biochemical Processes in Landfills, Sanitary Landfilling: Process, Technology and Environmental Impact: Academic Press. Christensen, T.H. Cossu, R. & Stegmann, R„ CISA, Cagliari, Vol.1, 59-66 McDougall, J R. & Pyrah, I.C. (2001). Settlement in landfilled waste: extending the geotechnical approach. In Proc. Sardinia 2001, Intl. Waste Man. & Landfill Symp. Eds. Demetracopoulos, A.C., Korfiatis, G.P., Bourodimos, E.L. & Nawy, E.G. (1986). Unsaturated flow through solid waste landfills: model and sensitivity analysis. Water Resources Bulletin, Am. Water Resources Assc. 22, No.4, 601-609. Demetracopoulos, A.C., Sehayek, L. & Erdogan, H. (1986). Modelling leachate production from municipal landfills. J Env. Eng., Am. Soc. Civ. Eng. 112, No.5, 849-866. Farquhar, G. J., & Rovers, F. A. (1973). Gas Production During Refuse Decomposition. Water, Air, and Soil Pollution, 2(1973), 483-495. M. V. Khire, C. H. Benson, P. Bosscher (1999): Field data from a Caspillary Barrier and Model Predictions with Unsat-H. J. of Geot. and Env. Eng. June:518-526. Korfiatis, G.P., Demetracopoulos, A.C., Bourodimos, E.L. & Nawy, E.G. (1984). Moisture transport in a solid waste column. J Env. Eng., Am. Soc. Civ. Eng. 110, No.4, 780-796. Korfiatis, G.P., & Demetracopoulos, A.C. (1986). Flow characteristics of landfill leachate collection systems and liners. J Env. Eng., Am. Soc. Civ. Eng. 112, No.3, 538-550. McDougall, J R. & Pyrah, I.C. (1999) Moisture effects in a biodegradation model for waste refuse. Sardinia '99, Proc. Sardinia '99 Seventh Waste Management and Landfill Symp. Eds Miller, C.J. & Wright, S.J. (1988). Application of variably saturated flow theory to clay cover liners. J. Hydr. Engr., Am. Soc. Civ. Engrs. 114, No. 10, 1283-1300 Monteiro, V. E. D & Juca, J. F. T; (2001). Municipal Solid Waste Landfill Behavior Using Geotechnical Instrumentation. Proc. of the XV. ICSMGE, Istanbul, 2001, August. Vol. Straub, W.A. & Lynch, D.R. (1982). Models of landfill leaching: moisture flow and inorganic strength. J Env. Eng., Am. Soc. Civ. Eng. 108, EE2, 231-250. Yuen S.T.S (1999) Bioreactor landfills promoted by leachate recirculation: A full scale study. PhD Thesis, University of Melbourne, Australia. Wall, D.K. & Zeiss, C. (1995) Municipal landfill biodegradation and settlement. A.S.C.E. J. Env. Eng., Vol. 121 No.3, 214-223 Williams, J. Prebble, R.E., Williams, W.T. & Hignett, C.T. (1983). The influence of texture, structure and clay mineralogy on the soil moisture characteristic. Aust. J Soil Research 21, 15-32. A kézirat beérkezett: 2003. augusztus 11. Az átdolgozás beérkezett: 2003. szeptember 25. IMRE EMŐKE MCDOUGALL, JOHN FARKAS JÓZSEF KOVÁCS MIKLÓS CZAP ZOLTÁN MONTEIRO, V. E. D. TRANG QUOC PHONG a műszaki tudomány kandidátusa, okleveles mérnök, mérnök-matematikus szakmérnök, tudományos főmunkatárs, Budapesti Műszaki és Gazdaságtudományi Egyetem Geotechnikai Tanszék. PhD., tudományos főmunkatárs, School of Built Environment Napier University 10 Colinton Rd Edinburgh, EH 10 5DT Scotland, UK. a műszaki tudomány doktora, tanszékvezető egyetemi tanár, Budapesti Műszaki és Gazdaságtudományi Egyetem Geotechnikai Tanszék. PhD., egyetemi docens, Budapesti Műszaki és Gazdaságtudományi Egyetem Geotechnikai Tanszék. oki. mérnök, egyetemi adjunktus, Budapesti Műszaki és Gazdaságtudományi Egyetem Geotechnikai Tanszék. okleveles mérnök, a PhD. fokozat pályázója, Federal University of Pernambuco, Brazília. oki. mérnök, a PhD. pályázója. Budapesti Műszaki és Gazdaságtudományi Egyetem Geotechnikai Tanszék. Biodegradation landfill technique Imre, E.; McDougall, J.; Farkas, J.; Kovács, M.; Czap, Z.; Monteiro, V.E.D.; Trang Q. Phong Abstract: The efficiency of the landfill treatment can be characterised by the speed of the volume decrease, or, in other words, the time taken for waste/residues to stabilise and sites to be restored. Further important aspects are the proper treatment of the gas, heat and leachate emission effects. These features can favourably be influenced if the waste stabilisation process is accelerated/controlled in such a way that the leachate is (re)circulated.The routes of a possible research are outlined. Key words: landfill treatment, bpodegradation.