Hidrológiai Közlöny 2003 (83. évfolyam)
6. szám - Havassy András–Papp Szabolcs: Nem-karsztos hegységi források átlagos vízhozamának meghatározása – a mérésszám csökkentés lehetőségei (angol nyelven)
352 Determining the average yield of non-carstic mountain springs possibilities of reducing the number of measurements Nemkarsztos hegységi források átlagos vízhozamának meghatározása - a mérésszám csökkentés lehetőségei Havassy András 1 - Papp Szabolcs 2 'Debrecen University, Department of Minerology and Geology, 4010. Debrecen, Egyertem tér 1. JEötvös Loránd Univ. of Arts and Sciences, Departm. of Appl. Inform. Methodoloogy, 1117. Budapest, Pázmány P. sét. 1/C. Kivonat: A természetvédelmi törvény értelmében a források védettségének megállapításához szükséges vízhozamuk ismerete. Bár tudományos vizsgálatok nem készültek arról, hogy hány mérés szükséges az átlagos vízhozam pontos megállapításához, valószínűleg elégséges a havonkénti mérés. Ez azonban a fonások nagy száma és a felmérés anyagi vonzata miatt megoldhatatlan. A VITUKI forráskataszter adatbázis felhasználásával számítást végeztünk annak meghatározása érdekében, hogy csökkenthető-e a szükséges mérések száma. Az eredmények azt mutatják, hogy a Tokaji-hegységben február és június közepe, míg a Börzsönyben január vége és június eleje a legalkalmasabb időpont a vízhozam mérésre. Az egyes napok mérési eredmény pontosságának valószínűsége a grafikonokról leolvasható. Módszerünk a későbbiekben a számítási adatok mennyiségének növekedésével, s egyes területek jellemzéséhez kiválasztott források mérésével pontosítható. Kulcsszavak: forrás, vízhozam 1. Introduction Their flow is the most important characteristic feature of springs. The graphical representation of measured flow rates linked to base points produces a chart, representing the flow of these springs. The more measuring data we have, the more accurately we can determine the average yield and its graph, the flow. One of the decrees (23§ (2)) of the 1996 LIII. Act of Nature Conservation states that springs are protected without any further decree in case their yield is more than 5 liter/ minute most of the year. For verifying they are protected we have to have a certain knowledge of the springs' yield. According to the VITUKI (Water Resource Research Center) cataster of springs, the catchment area of the Hercegkúti (Radvány) spring in the Tokaj Mountains - the territory we examined thoroughly - was surveyed between 1958-80, mainly with the aim of taking stock of utilizable water supplies {Izápy G -Maucha L. et a/1996). The number of measurings varies, most of the springs have 1-3 data. Two springs with great yield (Nyúl-kút, Deák-kút), that seemed suitable for providing settlements with water had been surveyed for twenty two and twenty one times. Based on only one-two measurings the flow and the average yield of springs can not be determined and even the yield of the more often measured springs could have changed during the more than 20 years that passed since the last measuring. The question of regular field surveys of springs bears some problems because of the springs' distance from settlements. The majority of these springs can be approached only on foot, which also adds to the cost of the survey. Although there hasn't been any scientific research determining the number of sufficient land surveys, we estimate a monthly measuring of springs would be enough. Knowing the above mentioned problems, because of the cost of survey it is unaccomplishable. That is why we tried to find out during our research whether the number of measurements can be reduced, what are the times, when we can measure a yield, similar to or identical with the yearly average. If we construct a flow graph containing the daily yield data from the measured data, we can determine the days, when the result of measuring will be similar to or identical with the yearly average. 2. Calculations Selecting the data We used the VITUKI data base for our calculations {Izápy G. 1999). When selecting the springs for our calculations we had the assumption that twelve measurements a year are sufficient for accurately characterizing the yield of a given spring. From the chosen springs we have at least one data per month. We did not set forth any other condition besides the minimum of twelve data, so the place of the spring, its elevation above sea level or type was regardless of our calculations. In the VITUKI cataster of springs we found numerous springs, meeting the above criteria from the Börzsöny and the Tokaji Mountains. (Chart 1). Chart 1 (1. táblázat) Some characteristics of the rows of data used for our calculations A számításokhoz felhasznált adatsorok néhány jellemzője Springs taken Data used Rows of data Mountains into in the with more than account caculations 12 data Börzsöny- mts. 8 76 11 Tokaji-mts. 9 43 6 Total 17 119 17 Applied programs For the calculations we used Maple V Release 5 and Excel for Windows XP programs. The most important characteristics of the application prepared with Maple: 1. It counts with cubic splines (between two measured data the function is equivalent with a third degree polinom) and uses natural boundary condition. 2. It processes data stored in *.dat files. The time-identifier of yield data is the number of the calendar date from 1 to 365. 3. It counts the average as well as the function average. 4. Based on the daily yield data it draws a flow graph, on which the places of measured data are determined. The course of the calculation 1. Preparing the yield data of springs in *.dat format. 2. Processing the *.dat files with Maple application. During this phase we got the daily data rows from the measured data. 3. Statistical processing of the results with Excel. For evaluating the data we calculated average and deviation as well, and counted their product of multiplication for the mutual evaluation of these two data sets. 3. Results Average At times when the graph's value (difference from the average) is 0 %, the accurateness of the measurement is 100