Hidrológiai Közlöny 1980 (60. évfolyam)
12. szám - Dr. Benedek Pál–dr. Licskó István: Mikroszennyezők eltávolítása az ivóvízből
Dr. Benedek P.—Dr. Licskó I.: Mikroszennyezők Hidrológiai Közlöny 1980. 12. sz. 491 tokszicses/.kih szvojsztv fenolov v proceszsze ih okiszlenyija Gigienyija i Szanit. I. [121 Weil, L. ct al.' (1974): WasserlŐslichkeit von Insektiziilen etc. Z,ft. JVA F, 7. fi. [13] Ottawa Kiver Project (1977): Distribution and transport of pollutants in flowing waters ecosystems Universty of Ottawa — National Research Council of Canada | 14| Dixon. K. II. (1975): Thermal plumes and niercury dynamics in the Environment Vol II. Toronto [15] Project Terminal Ke]>ort HUN (71/505 -HUN) PIPOOI (1976): I'ilot Zones for Water Quality Management in Hungary UNDP/WHO Project, Budapest [16] Santema, P. (1979): The pollution of the Rhine: The perspeetive for improvement. Water Kes. Centre Oonferenee, Oxford. Water Res. Centre, Stevenage Lab. Stevenage, U. K. [17] Müller, G., Fiirstner, V. (1968): Sediment transport im Mündungsgebiet des Alpenrheins. Geol. Rundschau. 58, 229—259 [18] Kudo, A., Toumsend, R. D., Miller, D. R. (1972): Prediction of mercury distribution in river sediments. J. Knviron. Eng. Div. 103, 605—614 [19] Literáthy, P., László, F. (1978): Accumulation of bioresistant mieropollutants in a particular catchment in Hungary Proq. Wat. Tech. 5/6 (381 — 389) [20] Benedek, P„ Literáthy, P., Somlyódy, L. (1977): Monitoring and modelling efforts on a large international river (Danube). Specialized Conference on Kiver Basin Management, Essen (paper No. 16. 1—22) [21] Helmholtz, II. (1879): Studien über elektrische Grenzschichten. Annalen der Physik und Chemie 7, 337 [22] Gouy, G.: (1910): Sur la constitution de ia charge electrique a la surface d'un electrolvte. Jour. Physique 9, 457 [23] Stern, 0. (1924): Zur Theorie de- Elektrolytisehen Doppelschicht Zeits. Elektrorhnw. 31), 508 ' [24] Schulze, H. (1882): Schwefelarsen in wassriger Lösung. Praktische Chemie 52, 431 [25] Stumm, W., Morgan, -7. J. (1962): Chemical aspects of coagulation. Jour. A WWA 54, 971 [26] l'. S. E. P. A. (1975): Process design manuál for suspended solids removal. Technology transfer. [27] Packham, II. F. (1962): The coagulation process II. Effect of pH on the precipitation of aluminium hydroxide. Jour. Appl. Chem. 12, 564 [28] Packham, li. F. Sheiliam, I. (1977): Developments in the theory of coagulation and flocculation. Jour. Indst. Wat. Eng. March, 96. [29] Licskó, I. (1976): Micro processes in coagulation. Wat. Res. 10. 143 [30] Mohtadi, M. F., Rao, P. N. (1973): Effect of temperature on flocculation of aqueous dispersions. Wat. Res. 7, 747 [31] Moffett, J: W. (1968): The ehemistry of highrate water Uvatment. Jour. A WWA 60, 1255 [32] Stumm, W., O'Melia, C. R. (1968): Stoiehiometry of coagulation. Jour. AWWA 60, 514 [33] Regunathan, P. et al. (1973): Cake filtration and filtrability. Jour AWWA 65 202 [34] Smoluchouski, M. (1917): Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen. 7Aets. Physik. Chem. 92 115 [35] öllős G. (1979): A derítés folyamatairól. Hidrológiai Közlöny, 336 [36] Camp, T. R., Stein, P. G. (1943): Velőéity gradients and internál work in fluid motion. Jour. Boston Soc. Civ. Engrs. 10 219 [37] Camp, T. R. (1953) Flocculation and flocculation basins. Proc. ASCE, 283/1 [381 Bulkai L. (1969): A koaguláció matematikai leírása ós az abból levonható gyakorlati következtelések a víztisztításnál. Hidr. Közi. 426 [39] Bulkai L. (1972): A flokkuláció és hatása a víztisztítási folyamatban. Hidr. Közi. 199 [40] Soucek, J./ Sindelar, J. (1967): The use of dimensionless criterion in the characterization of floc' eulation. VUV Prace a studie, Praha-Podbaba [41] Hahn, H. H. (1974): Coagulation. Post Conference course as of IAWPR at the University of Birmingham. [42] Licskó, I. (1978): Iszszledovanyije dejsztvija sztocsnüli vod celljulozno-bumazsnogo proizvodsztva po tormozsenyiju flokuljacii, Teziszü dokladov Vszeszojuznoj naucsno-tehnyicseszkoj konferencii, „Osznovniije napravlenyija ohranii okruzsajuscsej szredü v celljulozno-bumazsnoj i gyerevoobrabatüvajuscsej proiriüslennosztyi" Riga, 1978. ápr. 19 -21. [43] Licskó, I. (1979): Néhány speciális szennyezőanyag hatása a derítésre. 3. Vízminőségi és Víztechnológiai Konferencia. Budapest, 1979. okt. 9—11. [44] Licskó, I. (1979): A pH, a kontakt-idő és speciális szerves szennyezések hatása a koagulációra. Vituki Közlemények, 11. [45] US E. P. A. (1978): Manual of treatment techniques for meeting the interimprimary drinking water regulations. EPA-MERL Cincinnati, USA. [46] Csanády M./ Logsdon, G. S. (1975): Kísérletek kadmiumnak ivóvízből történő eltávolítására. Hidrológiai Közlöny, 291. Removal of niicropollutaiits from drinking water By Dr. Benedek, P. Cand. Techn. Sci. and Dr. Licskó I. An important phase in securing sources of drinking water free from micro pollutants consists of treating effluents containing such pollutants at the point of their origin. but at least before they are discharged into the recipient. This is normally performed in meeting the quality criteria specified for the recipients. Unfortunately, owing to non-point sources of pollution (air, soil) mieropollutants still find access to the water serving as sources of domestic water supply. The concentration of mieropollutants entering the source of supply can be reduced by choosing a proper site for the intake. Attempts should further be made at adopting technologies of water treatment, bv which the elementary hygienic requirements can be satisfied, namely to remove the mieropollutants to concentrations which romáin below the levels mentioned in the relevant criteria for drinking waters. In the first part of the paper the mieropollutants have been dealt with. Of these the heavv metals are liable to find access in major quantities to the recipients, migrating by the transport processes outlined here as far as the intake points. The relatíve proportions of dissolved and solid forms of the individual lieavy m(^tals depend 011 the chemical parameters of the particular recipient. The heavy metals, which enter the solid phase as a eonsequence of spontaneous precipitation form a colloidal-quasi colloidal dispersion, can be removed from the water by eombined sedimentation and filtration processes togefher with the natural suspended substances present originally 111 the water. The removal of heavy metals by sedimentation will be most effective, if virtually the entire quantity of heavy metals is in the solid phase. In order to satisfy this condition,it is commonly nesessary to raise the pH slightly. The efficiency of filtration is alsó controlled by clrarification, in that onlv the suspended matter retained on the filter can be removed from the water. The desired size of suspended particles should be obtained by the clarification process. The most important stage in clarification consists of déBtabilizing (disrupting the aggregative stability) the colloidal-quasi colliodal dispersion, which consists of negatively charged particles. Although there is amjile literature available on the properties of the alumíniumaiul iron hydroxide sols. which are suited for this purpose, „white spots" and conflicting views are alsó en-