Hidrológiai Közlöny 1974 (54. évfolyam)

10. szám - Dr. Dávid László–Dr. Szidarovszky Ferenc: A vízgazdálkodás nagytávlatú fejlesztésénak dinamikus modellje

Dr. Dávid L.— Dr. Szidarovszky F.: A vízgazdálkodás fejlesztése 446 Hidrológiai Közlöny 1974. 10. sz. m átlagos életkor [év] TT relatív regionális jövedelem csökke­nés a fejlesztési időszak egészében , LL relatív lélekszám csökkenés a fejlesz­tési időszak egészében [%] fliinaMHHecKafl MOAEJIB nepcneKTHBHoro pa3BHTHfl BOAHOI 0 X03HÍÍCTBa JJ-p JJaeud, J1 .•—JJ-p CuúapoecKii, 0. Hapflfly C C0UHaJlbH0-3K0H0MH'ieCKHM pa3BHTIieM B03­pacTaeT h 3Ha>ieHHe BOAHOTO xosaiícTBa. OflHaKo, cOajiaH­CHpoBaHHe pacTyinHx noTpeöHOCTeii Ha BOÄY c OÄHOH CTO­poHbi H npupoflHbix BOflHbix ycjiOBHií c Apyroií — TpeGyeT saTpaTbi BC£ CójibuiHx MaTepHaJibHbix H npowiix pecyp­COB, BÜ3M0>KH0CTb HCn0J130BaHHÍ) KOTOpbIX, K3K npaBHJIO, orpaHH'ieHa. RIPEAJIARAEMAJI pafioTa (B «BYX qacTbax) pacciwaTpbi­BaeT «HHaMHMecKyio Moaejib pasBHTiiíi BOAHOTO XO3ÍIH­CTBa H ee npaKTHMecKoe npHMeHeHHe — CHCTeMHbiií no,n­XOA K njiaHiipoBaHHK). Uejib paöOTbi: oGjierniiTb Bbißop HanßoJiee noAXOAfliueií CTpaTerHH pa3BiiTiia npn HaH­Gonee eij)({)eKTHBHOM ncnoji30BaHHH oGinecTBeHHbix pe­cypcoB FLJIA Tex COUNAJIBHO- SKOHOMHHCCKHX CHCTCM, KO­Topbie pa3BHBaiOTC« HMEFL orpaHHMeHHbie pecypcbi. KOM­noHeHTbi MOAEJIH H B3aHMHbie CBH3H H306pa>KeHbr na puc. 7. ECJIH Mbi ßyfleM uccjieflOBaTb HeKOTopbift Boflocßop B TeieHne HeKOToporo HHTepBajia pa3BHTHH TO TpeCoBaHH­ÍIMH K BOÄHOMy X03»HCTBy CO CTOpOHbl COUHaJlbHO- 3K0­HöMHMecKoro nporpecca Gy^yT: norpe6nocTH Ha BO/iy; FIE3B03BPATHOE noTpeöjiemie BO«bi; 3AMHTA OT BpeflHbix B03^eÍÍCTBHÍÍ BOflbl. 3TH TpeÖOBaHHH y^OBJlCTBOpMlOTCJl CJIE^YROUIHMH BHA3MH OCHOBHOÍÍ AEFLTEJIBHOCTH BO^HORO xo3«HCTBa: peryjinpoBamie CTOKa, floGbiwa H no^aMa BOÁM (BOflocnaO>KeHiie), omiCTKa CTOMHMX BOA. PeryjinpoBa­HHEM CTOKa MOMCHO YBEJIHMIITB KOJiHMecTBO „ncnojibsye­MWX" pecypcoB (puc. 2). OCYINECTBJIEHHH Ha3BanHbix BHÄOB AEFLTEJIBHOC™ BüAHoe X03HÜCTB0 HcnojibsyeT H oömecTBeHHbie H npn­poflHbie pecypcbi (MaTepiiajibHbie cpeACTBa, cneuiiajui­CTOB, sHeprHK) H BOflHbie pecypcbi). ECJIH HMEETCÍI AOCTATOIHO pecypcoB I<aK no KOJIH­MECTBY TAK H no BHASM OCHOBHOÍÍ AEFLTEJIBHOCTII TO njiaHH­pyeMoe counaJibHo-SKOHOMHIECKOE pa3BHTHe c TOHKH 3pe­HHH BOFLUORO XO3AÍICTBA OCYINECTBHMO ÖECNPENJITCIBEHHO. E CJIH »E KOJIHMECTBO pecypcoB HEAOCTATOMHO A-N« HÍ'»« II^EAJIBHORO pasBiiTHji- TOR^A BHAM OCHOBHOÍÍ FLEÍITEJIB­HOCTH BOflHOrO X03flÍÍCTBa HE CMOrV'T yßOBJieTBOpHTb no­TpeßHOCTeii oOmecTBa. B T3KHX cjiywajix HACTYNAWT YGBITKH (yujepG) KOTOPUE GyAVT RIPONOPUHOHAJINBI T. H. "jyBCTBHTejibHOCTH K HexBaTKe BOflbi H B pe3yjibTaTe KO­Topbix — c HeKOTopbiM orcTaBamieM — nocjie^yeT cna« TeMnoB pocTa HapoflOHaceJieHHH. PA3MEPW YMEPÖOB XAPAKTEPN3YIOTCH T. H. „YŐBITOQ­HblMH CHTyaUHaMH" (pilC. 3) H 33BHCHT OT pa3JViep0B H3­jjHHHbix pecypcoB H OT cnocofia pacnpeaejieHHji STHX pe­cypcoB ME>K«y BHFLAMH OCHOBHOÍÍ AEJITEJIBHOCTH (eapu­aumbi peuienuH). NOCJIE^HJIJI HASBMAETCA crnpameiueü pa38iimuH. K KawAOMy BapnaHTy pa3BHTHH, cocTomueMy 113 CH­CTeMbi pecypcoB 11 CTpaTermi pa3BHTHH OTHOCHTCJI onpe­AejieHHbiii yiyepG, xapaKTepHsyiomnii OTCTABHUE OT njia­HHpyeMoro pa3BHTHH nocjie ocymecTBJieHHíi AaHHoro Ba­piiaHTa. IJeAeean (fiywcifUH MOßejiH H3MepjieT pasMepw 3THX ymepÖOB AJIfl pa3JlHHHbIX BapHaHTOB pa3BHTH». OnTHMajlbHbIM BapHaHTOM JlBJI5ieTC» TOT, KOTOpblíi oőe­cneHHBaeT HaHMeHbinHÍl ymepG. OnTHMajibHoií CTpaTeriien íly^eM Ha3biBaTb Tai<yio uenb NOCJIEAOBATEABHBIX peiueHiiii (B ueJiBx pacnpeAejieHnyi orpaHimeHHbix pecypcoB MOK^y TPHMJI BHABMH OCHOBHOÍÍ AeSlTeJlbHOCTH) npH KOTOpOÍÍ TOpMOJKeHHe pocTy HaUHO­HajibHoro (HTH pernoHajiHoro) floxo^a H npupocTy Ha­poAOHaceJieHHH AOCTHraeT HaiiMeHbiiinx pa3MepoB. Mo^EJIB H ajiropHTM ee PEMEHHFL (puc. 4) GHJIH coera­BJieHbi Ha 0CH0Be MaTeMaTHMecKoií (fopMyjinpoBKii yno­MHHyTblX yCJlOBHÍÍ. BpeMeHHoii pH,n nepeMfHHbix AJIH nflHorn B03Mo>KHoro BapnanTa pa3BHTHíi HPHBOAHTCH Ha puc. .5. Mo^ejib, ocHOBaHHaa Ha ynoMHHyTbix npHHnimax npii­MeHHMa AJ1H OUeHKH MHOrO'IHCJieHHblX BapHaHTOB C CH­CTeMHbiM rroAxoflOM, HccJieflOBaHne KOTOpwx HeofíxofliiMO npn nepcneKTHBHOM njiaHupoBaHHH H BbiGope onTHMaJib­Horo BapnaHTa pa3BHTna. Dynamic model of long-term water management development Part I. Hi/ Dr. Dávid, L. — Dr. Szidarovszky, F. The significance of water management increases together with socio-economic evolution. However, increasing resources must be expended for establishing the balance between the natural water regime and the demands of society, these resouces begin in general limited in their availability. The aim of the dynamic water management development model and the practical application thereof is to select the optimal development strategy and to promote the most efficient use of the resources in expanding socio-economic systems with limited resources available. The factors forming the model and the interrelations thereof are shown in Fig. 1. In any development period the requirements for wa­ter management (fresh-water demand, water uses, water damage aversion) of socio-economic evolution planned in a particular catchment area can be satisfied by the basic activities, such as runoff control, water acquisition­supply, wastewater treatment, of water management. The water supplies available to society can be increased by runoff control ( Fig. 2 ). In this activity the resources (funds, professionals, power and water) are made avail­able by society and Nature, respectively. If the resources are sufficient in amount and in their distribution among the fundamental activities for performing the necessary basic water management activities, then there are no obstacles from the side of water management to the realization of the socio-eccono­inic evolution contemplated. On the other hand, if the amount of resources is less than that needed for ideal development, then the basic water management activities are uncapable of meeting the requirements of society. In such cases losses result, the magnitude of which depends on the extent of shortage tolerance and which cause after a certain time lapse the rate of economic- and population growth to decline. The magnitude of losses can be characterized with the help of the damage situations ( Fig. 3) and depends on the amount of resources available, as well as on the distribution thereof among the fundamental activities, these forming the decision variables. The latter are combined into the development strategy. Any deve­lopment alternative formed of the set of resources and the development strategy entails a loss, indicating the lower level of attainment by a particular alternative relative to the evolution envisaged. The target function of the model measures the magnitude of this loss in the case of the potential development alternatives. The optimal alternative is that resulting in the smallest loss. The optimal strategy is thus understood as the series of decisions concerning the distribution of the limited resources available among the three basic activities, at which the retardation of the growth in national (regional) income and in population number is smallest. By giving the criteria and relations outlined above a mathematical formulation the model itself and the algorithm of solution have been composed (Fig. 4). The time series of variables for a potential develop­ment alternative is shown in Fig. 5. The model composed on the basis of the foregoing principles is suited to the assessment according to the methods of systems analysis of the great number of alternatives that are essential in long-term planning, and thus to the selection of the optimal development alternative.

Next

/
Oldalképek
Tartalom