Hidrológiai Közlöny 1972 (52. évfolyam)

3. szám - Egyesületi és Műszaki hírek

Péczely T.: A kiskörei öntözőrendszerek Hidrológiai Közlöny 1972. 3. sz. 151 csőáteresz laboratóriumi vizsgálatáról. BME Kuta­tási Jelentés. 1971. (10] Szigyártó Z.: Vizsgálatok a K .I V. fürt főcsatorná­ján a vízveszteségek és mederérdességi viszonyok meghatározására. Vízügyi Közlemények. 1965/2. f 11] Starosolszky Ö.: Önműködő berendezések az öntöző­víz szolgáltatására. Vízügyi Közlemények. 1960/3. The design and operating conditions of ihc Kisköre Irrigation Development By Péezély, T. In the perspective plans irrigation development over an aggregate area of 600,000 hectares (Fig. 1) is en­visaged, comprising supply to 60,000 hectares already equipped for irrigation from the new system (Fig. 2) and intensive irrigation development over about 180,000 hec­tares. ' The irrigation sections. Through the main canals irri­gation water is supplied by gravity from the Kisköre Reservoir to 425,000 hectares in the Nagykunság irrigation section 188,000 hectares in the Jászság irrigation secton while water is diverted directly from the reservoir for the 87,000 hectares in the section along the backwater reach. The irrigation sections are further subdivided into subsections (Fig. 3). With due regard to the particular conditions in individual sections, there is possibility for installing 14 subsections in the Nagykunság section, 22 subsections in the Jászság section and 8 subsections in the section along the backwater reach. Operation of the conveyance system The basic aim of operation is to meet as completely as possible the demand for irrigation water of the con­sumers, which involves free withdrawal under observa­tion of certain conditions. This implies logically the system of w ater conveyance, which is downstream con­trolled and automatic in all open canal- and closed con­duit distribution networks in the Kisköre Irrigation Sec­tions. in downstream controlled systems the discharge through the regulating structures of distribution is con­trolled by the consumer demands from the downstream side. Any intermediate regulating structure will always adjust to discharging the flow corresponding to the rate of diversion by the farmers, increased by seepage and evaporation losses. The control system in the drainage network is in ac­cordance with the system in the distribution network, of the headwater controlled type. Any intermediate re­gulating structure will always adjust to discharging the total flow arriving from the upstream part of the net­work, while maintaining a preset headwater level. In the downstream controlled systems water is meter­ed continuously with an accuracy of +10% at the head­works of the main canals, at the farmer's diversions and, logically, at the points where excess water is returned into natural watercourses. Continuous supervision of the water conveyance sy­stem is exercised from control centers situated at key points. Brief periods may occur in the canal system during which, in departure from the operating conditions en­visaged, the following special conditions may occur: — Changeover from winter- to normal irrigation operation, — drawdown, preparation for winter operation, — restriction, — winter operation, — drainage operation, and — emergency peak operation. Sprinkler irrigation subsections. Under the complex program a number of sprinkler irrigation subsections are contemplated in the Kisköre Irrigation Sections. These subsections are grouped for efficient operation (Fig. 4). The automatic pumping stations are connected to a con­trol center, where operating conditions, or malfunction­ing are monitored continuously for several — 2 to 5 — such stations. Dimensioning and design of the distribution system. In designing the distribution system the elements were dimensioned for a design discharge, computed from a formula derived in accordance with the design philosophy taking operating conditions into consideration. The for­mula is QM = KQcsn, where QM the design discharge Qcsn the average net peak demand K a factor, composed of the following parts K = KeKfsKjaKteKn where Ke the peak uniformity coefficient, representing demand fluctuations in peak periods (Fig. 5) Kfd and Kfa factors representing evaporation and seepage losses from main- and section canals, Kte factor expressing evaporation and seepage losses from irrigated areas, and K n factor representing changes in plant culture. Control of flowing water in the distribution network is accomplished by control structures, regulating where necessary the energy content and volume of water. In the sub-sections the following control structures are envisaged : — sub-section intakes; — reach-regulators; — farmer's intakes and — emergency structures. One of the most important prerequisites for realizing the contemplated method of operation consists of the proper, normal use, continuous supervision and regular maintenance of the structures, which on the other hand, call for properly trained and well organized operating personnell. (Folytatás a 110. oldalról) December 2-án kibővített elnökségi ülést tartott a Csoport a jogi tagok képviselői jelenlétében. A Csoport titkára beszámolt az 1971. évi tevékenységről, ismertette az 1972. évi munkatervet és költségvetést, majd fény­képek bemutatása és vetítés mellett beszámolt a Romá­niában a Körös vízgyűjtőn végzett tanulmányúton szer­zett tapasztalatokról. A december 16-i utolsó ülés célja is az volt, hogy a Körös vízgyűjtő alsó szakaszán vízgazdálkodók helyzeté­ben következtetéseket vonjon le a romániai felső szaka­szon folyó vízimunkálatokból, az ebben a térségben fo­kozottan folyó iparosításból, a mezőgazdasági ós kom­munális vízigény növekedésből. Az előadást Baranyő Géza tartotta „A Körös vízgyűjtőn folyamatban levő vízi­munkálatokból levont következtetések" címmel. Dr. Márki-Zay Lajos titkár

Next

/
Oldalképek
Tartalom