Hidrológiai Közlöny 1959 (39. évfolyam)

3. szám - Kovács György: A gát alatt átszivárgó vízhozam megoszlása a mentett oldalon

198 Hidrológiai Közlöny 1959. 3. sz. Kovács Gy.: A gát alatt átszivárgó vízhozam, [11] Németh E. : Gátalatti szivárgás kísérleti úton való vizsgálata. A Budapesti Műszaki Egyetem I. sz. Vízépítési Tanszékének Közleményei, No-1. Budapest, 1949. [12] Pavlovszkij N. N. : The Theory of Ground-Water Flow beneath Hydrotechnical Structures. Orosz nyelven megjelent Leningrádban 1922-ben, angol nyelven benyújtva a Nagy Gátak első kongresszu­sára, Stockholm, 1933. 36. tanulmány a 27. kér­déscsoportban. [13] Pavlovszkij N. N. : Coopauwe COHHHCHHH (Össze­gyűjtött munkái). H3AarejibCTB0 Aioacmhh Mayic CCCP, Moszkva és Leningrád, 1956. [14] Selim: Dams on Porous Media, Trans. Americ, Soc. of. Civ. Eng. (ASCE) Vol. 112. 1947. p. 488. [15] Weawer, W. : Uplift Pressure 011 Dams. Journal of Matematics and Physics, Vol. XI. No. 2. June 1932. PACnPEflEJlEHHE nPOOHJlbTPyíomErocfl PACXO^A nOfl OCHOBAHHEM IlJlOTHHbl HA CTOPOHE HHWHErO BbEOA KaHA- TexH. Hayn. JJb. Koeai B CTaTbe npuBOflHTCíi 33BHCHMOCTH, peKOMeiwe­Mbie fljia xapaKTepHCTMK pacxofla <j)HJibTpamiOHHbix BOA, npotJjHjibTpyiomuxcíi no« njiOTHHOH IIJIII B0A0Henp0Himae­MOH AaMŐoü, pacnojiaraiomeiiíi Ha B0A0Henp0HHnaeM0M rpyHTe. OCHOBHOH ajiíi onpeAeJieHiin ypaBHeHiiíí cjiy­>KHJIH HccjreAOBaHHH no ajieKTpHMecKOH aHajion-ni. COOT­BeTCTBeHHO 3T0My peKOMeHAyeMbie ypaBHt'Hiia ABJIÍHOTCH TOJibKO npHŐJIÍI>KeHHbIMH, eCJlH He yflOBJieTBOpíIIOT npH­6jiH>KeHHbie npeAnocbiJiKH, cAeJiaHHbie npn H3MepeHHHx (nnocKoe noTeHmiajibHoe n ycTaHOBHBiiieecsi ABHweHHe ; 0AH0p0AHbiH, OAHOcjiOHHbiü BOAonpoHHiiaeMbiii rpyHT, KOTopbiií cHH3y orpaHHMCH BOAoynopHbiM cjioeM ; pa3pe3 noBepxHoc™ co cTopoHbi Hii>KHero ÓT>e([)a HBJIHCTCJI rowe jiHHen noTeHiinajia ; BOAOHenpoHimaeMoe, nnocKoe OCHO­BaHHe AaMÖbi HJIH njiOTHHbi). C yneTOM STHX npeAnonowe­HIIÍÍ MO>KHO onpeAejniTb xapaKTepncTHKH pacxoAa (Jjmib­Tpamni B cjiyiae JUOÖOH KOMÖiiHaniiH nnocKoro (juuoTöeTa H OAHOpHAHOH lUnyHTOBOÜ CTeHKH, a HMeHHO nOJIHblH pacxoA (JiHjibTpauiiH, pacnpeAeJieHiie BbixoAHwerocn pacxoAa B cTopoHe Hii>KHero 6bei}>a, T. e. 3T0My cooTBeT­CTByromyiO BejlHHHHy CKOpOCTH BbIXOAa B 3aBHCHM0CTH OT MecTa. nocne BBeAeHHH, cyMMifpyji BO 2-oií rjiaBe pe3yjib­TaTbi npeAbiAyuinx cTaTbetí, aBTopoM AaeTca 3aBiicn­MOCTb (ypaBHeHiie I.) ajih pacieTa noJiHoro (JiHjibTpaun­OHHoro pacxoAa w (JiopMyjia (ypaBHeHHe 2.) AJIH TpaHc­4)OpMamiH CJ10HCH0H CXeMbI OCHOBaHHH. B 3-eü RUABE PACCMATPUBAETCN H3MEHEHHE BHXOA­HOÍÍ CKOpOCTH co cTopoHbi HHWHero 6be(J)a y npocToro njiocKoro (JuiioTöei'a. OCHOBOH Hcnonb3yeTCH TeopeTH­HecKii BbiB0AHM0e ypaBHemie, AeücTQU'reJibHoe B cjiynae öecKOHeiHO MOiuHoro tjniJibTpaiiHOHHoro CJIOH H K HeMy IIIHHM TaKOrO K03l|)HI!HeHTa MHOHxfiTejlfl, KOTOpbIM yAOB­jieTBopjnoTCíi npeAeJibHbie yejiOBim no (})H3HMecK0My xapaKTepy ABHJKCHHÍI TaK>Ke, Kai< H pe3yjibT3Tbi H3MC­peHHíí. ílocTOBepHOCTb peKOMeHAveMoro ypaBHCHiiH 10/a noi<a3aHa HA 4>HI\ 3. H3 STOIÍ 3aBHCnM0CTii nojiyMaeTcn H mupHHa 30Hbi (JiiiJibTpamiH, KaK npeAeJibHoe ycjioBHe (YPABHEHHH 11 H 12, t}mr. 4.). B 3aKJU0MHTejlbH0ÍÍ MaCTH CTaTbll 3aBHCHM0CTH, BbiBCAeHHbie no (jwjibTpaiiHH noA njiocKHM (jjjuoTöeTOM, OÖOÖmaiOTCH AJ1H T3KHX CJIOWHblX CXeM OCHOBaHHH, K0­Topbie nojiynaioTCíi no juoöoií KOMÖiiHaiiHH njiocKoro (|)jnoT6eTa H OAHOPHAHOÜ mnyHTOBOíi CTeHbi. B STOM cjiy­Mae HJIH pacieTa BHXOAHOH CKOPOCTII cnyjKHT ypaBHeHiie 16, a AJonpeAejieHHH IUHPUHH 3aTpoHyToii 30Hbi ypaB­HeHHe 17. B HHX BCTpeMaiouuiecH nepeMeHHbie MoryT 6i.iTb onpeAeneHbi TpaHcijjopMauHeií, c noMOiiibio ypaBHe­HHH 12, 14 H 15. Bejiimima, pacmiTaHHan no ypaBHeHHio 16 conocTaBJTHeTCH c pe3yjibTaTaMH H3MepeHiiii Ha (|)iir. 6. Eme pa3 NOAIEPKIIBAETCH, MTO HamicaHHbie 3aBn­CHMOCTH ACHCTBHTejibHbi TOJibKO B cjiynae yKa3aHHbIX npeAnojio>KeHHH. BBHAV TOTO, HTO B HHX npeHeöperanH BJiiiaHHeM non™ BcerAa npiicyTCTByioiiiero noKpwBaio­mero CJIOH, pac^HTbiBaeMbie pe3yjibTaTbi MoryT paccjwaT­piIBaTbCÍI KpiITimeCKHMII KpafiHHMH BejlHIHHaMH c TOMKH 3peHiiH pacxoAa. Bo3HHKaiomHíic>i noTOK (JiHJibTpauHH B BOAOnpoHHiiaeMOM cjioe yAJiHHHeTc>i noKpuBaiomiiM cnoeM B cTopoHy HiiHCHero 6bei})a, TaKiiM 0öpa30M MOweT yBejlHMHTbCH UIHpiIHa 30HbI, 3aTp0HyT0Ü (J)HJlbTpaUHeÍI. OiijibTpamioHHbie BOAbi H3A0 coöpaTb cncTeMOií ocyiiie­HIIH. A cöopHbie KaHajibi B öojibiiiHHCTBe cjiyMaeB 3arjiy6­JIHIOTC5I B BOAOHOCHblH CJIOÍÍ, nOTOMy MTO TOJibKO TaK MOMCHO oöecnemiTb HX e(J)(j)eKTHBHOCTb, H TaK MOJKHO 3K0H0MHMH0 AOCTHMb yCTOHMIIBOCTH OTKOCOB. H0 B TaKOM cjiynae noKpbiBaiouiHMH CJIOHMH HHWHero 6be(J)a He OKa­3biBaeTC5i HHKaKoro AGUCTBHH Ha n0T0K (jiiiJibTpauHH. Hx pojib 3aKJiioMaeTCH TOJibKO B TOM, MTO nojiyMeHHbiíi, KaK pacnepeAejieHHan Harpy3Ka, pacxoA pacnpeAeJiH­ETCH B CTOPOHY KAHAJIOB, HJIH APENA>KEH, 03HAMAIOMHX KOHUeHTpiipOBaHHOrO OTBOfla. The Distribuiion of Underseepage Flow on the Protected Side By Gy. Kovács Candidate of Technical Sciences Relationships suggested for determining the cha­racteristics of the rate of flow in case of seepage de­veloping under a dam or levee on permeable sub­layers are described in the present paper. The form­uláé were established on basis of electric analogy in­vestigations. Accordingly, the suggested relationships will be of but approximating character, unless the simplifying assumptions adopted for the investigations are complied with (pláne, potential and steady flow, a single permeable layer which is homogenous, uncovered and on water-tight sublayer, tlie terrain profilé at the protected side is alsó a potential line, a water-tight, fiat levee or a levee base). These simplifying assumptions help, however, to compute characteristics of seepage flow for any combination of a fiat base slab and a single cut-off wall. These characteristics are the totál seepage flow and the distribution thereof at which it emerges on the protected side, respectively, the equi­valent emerging velocity for any point. Resuming results of earlier investigations, the second part describes the relationship for computing the totál seepage flow (Eq. 1) and the expression de­rived for the transformation of a complex foundation profilé (Eq. 2). The third part is devoted to the investigation of emerging velocities at the downstream side of a simple fiat base slab. The equation derived theoretically for an infinitely deep permeable layer, was adopted as basis and a suitable multiplication factor was deter­mined, so as to satisfy both the boundary conditions which are defined by the phvsical character of the movement, and the observed data. The reliability of the proposed Eq. 10/a is illustrated in Fig. 3. The width of the rangé affected by seepage is obtained as a boundary condition from the relation (Eqs. 11 and 12, Fig. 4). Relationships derived for seepage under simple, fiat foundation slabs are generalized in the conclud­ing part for complex foundation profiles, which can be considered as an arbitrary combination of a fiat found­ation slab and a single cut-off wall. Emerging velocities are to be computed in this case from Eq. (16), while the width of the affected area is given by Eq. (17). Variables involved can be determined by transforma­tion using Eqs. (2), (14) and (15). Results computed by Eq. (16) are compared with observed data in Fig. 6. It should be remembered, that the relationships derived are not valid unless the above-mentioned simplifying assumptions aetually prevail. The cover on the protected side lengthens the path of flow in the permeable layer, and may thus increase the width of -the rangé affected by seepage. A drainage system is usually required to collect the seepage flow. However, in order to be efficient, the collecting canals extend mostly into permeable layer, which permits a more economical stabilization of the collecting surfaces. In this case, a cover on the protected side does not influence the development of seepage beyond diver­ting the distributed flow towards the drainage canals or pipes, where it appears in concentrated form.

Next

/
Oldalképek
Tartalom