Fogorvosi szemle, 2002 (95. évfolyam, 1-6. szám)

2002-10-01 / 5. szám

214 FOGORVOSI SZEMLE ■ 95. évf. 5. sz. 2002. Köszönetnyilvánítás Köszönetét mondunk dr. Mihalik Erzsébet tanszékve­zető egyetemi docensnek (SZTE Növénytani Tanszék) a pásztázó elektronmikroszkópos felvételek elkészíté­séért, dr. Berkesi Ottó egyetemi docensnek (SZTE Fizikai-Kémiai Tanszék, Rezgési Spektroszkópiai La­bor) a Fourier transzformációs infravörös spektroszkó­piai mérésekben nyújtott segítségéért és dr. Tóth Zsolt tudományos főmunkatársnak (SZTE, TTK, MTA Lé­zerfizikai Tanszéki Kutatócsoport) a titán korongok lézeres kezeléséért. Irodalom 1. Andersson Öh, Salonen Ji, Yli-Urpo A: Biomaterials today and tomorrow. Proceedings of the Finnish Dental Society Days of Research, Tampere, Finland, 1995. 2. Brindley Gw, Brown G (ed.): Crystal Structures of clay minerals and their X-ray identification, Ch. 6., Associated minerals. Miner Society, London, 1980; 361-378. 3. Brown We, Smith Jp, Lehr Jr, Fraizer Aw: Octacalcium Phos­phate and Hydroxiapatite, Nature 1962; 196: 1048-1050. 4. Combes C, Rey C, Fresche M: XPS and IR study of dicalcium phosphate dihidrate nucléation on titanium surfaces. Colloids and Surfaces B: Biointerfaces 1998; 11:15-27. 5. Gergely P, Erdôdi F, Vereb Gy: Általános és bioszervetlen kémia. Semmelweis kiadó, Budapest, 1997. 6. James Ro, Parks Ga: Characterization of Aqueous Colloids by their Electrical Double-Layer and Intrinsic Chemical Properties. In: Matijevic E (ed.): Surface and Colloid Science, Plenum Publishing Corporation, New York, 1982; Vol. 12: 119-216. 7. Kay Jf: Calcium phosphate coatings for dental implants. Current status and future potential. Dent Clin of North Am 1992; 36(1): 1-18. 8. Prezmetcky L: Hidroxiapatit (Ceros-80) alkalmazása a fogorvosi implantológiában. Fogorv Szie 1993; 86: 165-175. 9. Lautenschlager Ep, Monaghan P: Titanium and titanium alloys as dental materials. Int Dental Journal f993\ 43: 245-253. 10. Wang Rr, Fenton A: Titanium for prosthodonic application: A review of the literature. Quintessence International 1996; 27(6): 401-408. 11. Wataha Jc: Materials for endosseous dental implants. Journal of Oral Rehabilitation 1996; 23: 79-90. 12. Wu W, Nancollas Gh: Nucléation and Crystal Growth of Octa­calcium Phosphate on Titanium Oxide Surfaces. Langmuir 1997; 13: 861-865. Szekeres M, Fodor G, Radnai M, Turzó K, Dékány I, Fazekas A: Formation of crystalline calcium phosphate coating on the titanium dioxide layer of dental implants’ surface Production of octacalcium phosphate crystals on the surface of titanium dioxide particles was achieved at high con­centration of titania particles. Optimising the speed of addition of the reagents in the process of crystal growth in het­erogeneous nucléation reaction led to reproducible OCP crystal structure on the particle surface. The crystal structure of OCP was investigated by SEM, XRD and FTIR methods. The same crystallization process on the surface of metallic titanium plates did not result in formation of OCP crystals. The evaporated titanium layers on a glass surface and titanium plates without excimer laser treatment did not bond calcium phosphate at any rate. SEM investigations imply that the surface layer of titanium plates changes radically due to laser beam treatment, likely because of oxidation of titanium in the process of evaporation followed by deposi­tion back onto the surface. The calcium phosphate formation on these oxidised titanium plates could be observed by SEM. It can be concluded, that for OCP-formation on titanium metal surface it is necessary to form a thick oxide layer, as the native oxide layer in the case of non-treated titanium substrates did not bound the calcium phosphate, while formation of calcium phosphate could be reached on the laser-treated surface. Key words: octacalcium phosphate crystals, crystal growth, heterogeneous nucléation, surface oxide layer, titanium implants, surface laser-treatment

Next

/
Oldalképek
Tartalom