Az Eszterházy Károly Tanárképző Főiskola Tudományos Közleményei. 1989. 19/8. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 19)
K. Dialek — A . Grytzuk: Some remarks on certain diophontine equations
- 26 PROO F. First, we prove that if Cx,y)=i, n<m and C3. 3) x n + y n j x w - y w, thr*n C3.d> n I m . Since m > n thus m =• nq + r , where 0^r<n. Ve consider two cases: Ci) q is an odd number, Cii) q is an even number. In the case Ci) , we have C3.5> x m-y r = x r [x n+y n] [x nc qi í-x nt <í2 ,y+. ..-y" c q~ 1 D]-y n q [x r+y r]. Since C3. 6) j •= 1 thus from C3. 3) and C3.5) we get x n + y n x r + y r , which is impossible if r>0. Thus r«0 and therefore nJm. In case Cii> we have q » 2 a q* , where C2,q ,)o<l , «->-! and therefore for m =» n 2 n q* + r , OSr<n we get C3. 7) Since x M-y m=x r r, .-,2° r 02 a [( x') - [ yn q } J thus by assumption C3.3) and (3.7) we obtain x n + y n I x f • y f , and similarly as above it is impossible if r>0. Thus r=0 and n|m follows. Since <x,y)=i , C3. 8) [x,x n+y n]=»l and [y,x n+y n ]«i