Az Egri Ho Si Minh Tanárképző Főiskola Tud. Közleményei. 1987. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 18/11)

Krystyna Bialek — Aleksander Grytczuk: The equation of Fermat in ...

- 89 ­I^F [M-M"]­For n=2k (22) R = a 2 and S=0. follows. By C20) and (22) we get­A n= 0 1 n n a 2 0 n n 1 0 a 0 . o a 2. . 0 1 Similarly we obtain B n = b 2. For n=dm we have 1 0 0 1 C n = c 2. A 4m. D4m 2 m +ti =a 1 0 0 1 1 0 0 1 1 0 0 1 = (a 2Tr i+b 2 r"] . 1 0 0 1 1 0 0 1 = c 4 m and the proof is complete. From Theorem 2 we get the following Corollary: COROLLAR Y CR.Z.Domiaty [3]) If K=Q and a,b,c <s Z then the equation A 4 + B? = C 4 a b e have infinitely solutions of the form A.­[2 hlK-ii £]> c*=[° b ] ­where a=^m 2-n 2].l, b=2mnl, c= |m 2+n 2] .1, m>n, Cm,n)=l, 12:1

Next

/
Oldalképek
Tartalom