Az Egri Ho Si Minh Tanárképző Főiskola Tud. Közleményei. 1987. (Acta Academiae Paedagogicae Agriensis : Nova series ; Tom. 18/11)

Krystyna Bialek — Aleksander Grytczuk: The equation of Fermat in ...

- 86 ­3. PROOFS OF THE THEOREMS. PROOF OF THEOREM 1. Assume t-hat A, B, G e G 2 Ck;> and le t* r s I s„ r s^ A = 1 1 k Si ri. , B = 2 2 [2 2. ,0 = 3 3 ks^ r 3 3. such that dl) A n + B n = G n. By Lemma 1 we obtain A — M N M N 1 1 , B n­2 2 3 3 kN M , B n­kN M > ^ — kN M 1 1 2 2 3 3 where ír +s Vjr] n+fr -s VT"] Mm m J ^ in m J I C12) N =­2VjT Hence by (11) we have i— ír +s ViP] n-ír -s VT" 1]" , m=l,2,: H TO m J I. TO m J J C13) M. = M + 3 12 N„ = N 4 + N . 3 12 From C12) and C13) we get (r 1+s 1Vir] n+(r 2+s 2Vir] n = [ly^Vk-jV Putting in the last equality a = r 1+s i VIT, ß « r 2+s 2VjT, y = r 3+s 3VT, we obtain a r'+ ß n= I

Next

/
Oldalképek
Tartalom